MATH 052: INTRODUCTION TO PROOFS EXAM \#2

Name

Problem	Score
1	
2	
3	
4	
5	

Total \qquad

Problem 1.

(a) Determine the power set $\mathcal{P}(A)$ of the set $A=\{0,2,-6\}$.
(b) Consider the following subsets of $A=\{1,2,3,4,5,6\}$:

$$
\begin{array}{ll}
S_{1}=\{\{1,3,6\},\{2,4\},\{5\}\} & S_{2}=\{\{1,2,3\},\{4\}, \emptyset,\{5,6\}\} \\
S_{3}=\{\{1,2\},\{3,4,5\},\{5,6\}\} & S_{4}=\{\{1,4\},\{3,5\},\{2\}\}
\end{array}
$$

Determine which of these sets are partitions of A.
(c) True or false: if $f: A \rightarrow B$ is injective and $g: B \rightarrow C$ is injective, then $g \circ f: A \rightarrow C$ is injective.
(d) Give an example of a function $f: A \rightarrow B$ which is surjective but not injective.
(e) Evaluate the sum $\sum_{k=1}^{4}\left(k^{2}-2\right)$.

Problem 2. Prove by induction that

$$
1+2+2^{2}+\cdots+2^{n-1}=2^{n}-1
$$

for all integers $n \geq 1$.

Problem 3.

(a) Recall that $n \in \mathbb{Z}$ is even if $n=2 k$ for some $k \in \mathbb{Z}$. Consider the relation R defined on \mathbb{Z} by $a R b$ if and only if $a+b$ is even. Which of the properties reflexive, symmetric, and transitive does the relation R possess? Justify your answers.
(b) Let $A=\{1,2,3,4,5\}$. The relation

$$
R=\{(1,1),(1,5),(2,2),(2,3),(3,2),(3,3),(4,4),(5,1),(5,5)\}
$$

is an equivalence relation on A. Draw the graph associated to R and determine its equivalence classes.

Problem 4. Let A, B, C be sets. Prove that
$A \times(B \cap C)=(A \times B) \cap(A \times C)$.

Problem 5. Show that the map

$$
\begin{aligned}
f: \mathbb{R} \backslash\{2\} & \rightarrow \mathbb{R} \backslash\{3\} \\
x & \mapsto f(x)=\frac{3 x}{x-2}
\end{aligned}
$$

is a bijection.

