MATH 052: INTRODUCTION TO PROOFS EXAM \#2

Problem 1(a). $\mathcal{P}(A)=\{\emptyset,\{0\},\{2\},\{-6\},\{0,2\},\{0,-6\},\{2,-6\},\{\emptyset, 2,-6\}\}$.
Problem 1(b). Only S_{1} is a partition: S_{2} has the empty set as a block, S_{3} repeats 5 in two blocks, and 6 does not belong to any block in S_{4}.

Problem 1(c). True!
Problem 1(d). Take $A=\{1,2\}$ and $B=\{1\}$ and let $f(1)=f(2)=1$.
Problem 1(e). The sum is equal to $\left(1^{2}-2\right)+\left(2^{2}-2\right)+\left(3^{2}-2\right)+\left(4^{2}-2\right)=-1+2+7+14=22$.
Problem 2. For the base case, we have $1=2^{1}-1$. For the inductive step, suppose that

$$
1+2+2^{2}+\cdots+2^{n-1}=2^{n}-1
$$

Then

$$
1+2+\cdots+2^{n-1}+2^{n}=\left(2^{n}-1\right)+2^{n}=2\left(2^{n}\right)-1=2^{n+1}-1
$$

So, by the principal of mathematical inductino, the statement is true for all integers $n \geq 1$.
Problem 3(a). R is reflexive, since $a+a=2 a$ is even for all $a \in \mathbb{Z} . R$ is symmetric, because if $a+b=2 k$ is even then so is $b+a=a+b=2 k$. Finally, R is transitive since if $a+b=2 k$ is even and $b+c=2 m$ is even, then $a+c=(a+b)+(b+c)-2 b=2 k+2 m-2 b=2(k+m-b)$ is even.

Problem 3(b). The equivalence classes are $[1]=\{1,5\}=[5],[2]=\{2,3\}=[3]$ and $[4]=\{4\}$.
Problem 4. We have

$$
\begin{aligned}
(x, y) \in A \times(B \cap C) & \Leftrightarrow(x \in A) \text { and }(y \in B \cap C) \\
& \Leftrightarrow(x \in A) \text { and }(y \in B \text { and } y \in C) \\
& \Leftrightarrow(x \in A \text { and } y \in B) \text { and }(x \in A \text { and } y \in C) \\
& \Leftrightarrow(x, y) \in A \times B \text { and }(x, y) \in A \times C \\
& \Leftrightarrow(x, y) \in(A \times B) \cap(A \times C) .
\end{aligned}
$$

Problem 5. First, we show that f is injective. Let $x_{1}, x_{2} \in \mathbb{R} \backslash\{2\}$ and suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\frac{3 x_{1}}{x_{1}-2} & =\frac{3 x_{2}}{x_{2}-2} \\
3 x_{1}\left(x_{2}-2\right) & =3 x_{2}\left(x_{1}-2\right) \\
3 x_{1} x_{2}-6 x_{1} & =3 x_{1} x_{2}-6 x_{2} \\
6 x_{1} & =6 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

So f is injective.

Next, we show that f is surjective. Let $y \in \mathbb{R} \backslash\{3\}$. We solve for x in terms of y :

$$
\begin{aligned}
f(x)=\frac{3 x}{x-2} & =y \\
3 x & =y(x-2)=x y-2 y \\
3 x-x y & =-2 y \\
x(y-3) & =2 y \\
x & =\frac{2 y}{y-3}
\end{aligned}
$$

Since $f(2 y /(y-3))=y$, we see that f is surjective.

