MATH 052: INTRODUCTION TO PROOFS EXAM #1

Problem 1(a). False. Valid expressions would be $P \land (\sim Q)$ or $P \land (\sim Q \lor R)$.

Problem 1(b). The implication is true, because the hypothesis is false.

Problem 1(c). The contrapositive is "If f is not continuous at $c \in \mathbb{R}$, then f is not differentiable at $c \in \mathbb{R}$ ".

Problem 1(d). There are 4 elements-no repetitions in sets are allowed.

Problem 1(e). The negation of an implication $P \Rightarrow Q$, which is defined to be $\sim (P \land (\sim Q))$, is $P \land (\sim Q)$. So the negation is: "You earned a passing grade on the final exam and did not receive a passing grade for your final grade."

P	Q	R	$P \Rightarrow (Q \lor R)$	$ (\sim P) \lor R$	$(\sim Q) \Rightarrow ((\sim P) \lor R)$
F	F	F	Т	Т	Т
\mathbf{F}	\mathbf{F}	Т	Т	Т	Т
\mathbf{F}	Т	\mathbf{F}	Т	Т	Т
\mathbf{F}	Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
Т	\mathbf{F}	Т	Т	Т	Т
Т	Т	\mathbf{F}	Т	F	Т
Т	Т	Т	Т	Т	Т

Problem 2(a). Fun with truth tables!

Since the two columns have the same truth table, the sentential forms are logically equivalent.

Problem 2(b). A tautology is a sentential form which is true no matter what the values of the propositions. For example, $P \lor (\sim P)$ is a tautology.

Problem 3(a). This statement is true: we can take y = 5 - x.

Problem 3(b). In symbols, " $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y + 3 = 8)$ ".

Problem 3(c). In symbols, the negation is " $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y + 3 \neq 8)$ ".

Problem 3(d). In words, "There exists a real number x such that for all $y \in \mathbb{R}$ we have $x + y + 3 \neq 8$."

Problem 4. Let $n \in \mathbb{Z}$ be odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Therefore

$$4n^2 + n - 2 = 4(2k + 1)^2 + (2k + 1) - 2 = 4(4k^2 + 4k + 1) + (2k + 1) - 2 = 2(8k^2 + 9k + 1) + 1.$$

Since $8k^2 + 9k + 1 \in \mathbb{Z}$, by definition, $4n^2 + n - 2$ is odd.

Problem 5(a). $A = \{x \in \mathbb{Z} : -2 \le x \le 3 \text{ and } x \ne 0\}.$

Problem 5(b). $A \cup B = \{1, 3, 5, 9, 13, 15\}, A \cap B = \{9\}, \text{ and } A \setminus B = \{1, 5, 13\}.$

Problem 5(c). Take $A = \{1, \{1\}\}, B = \{1\}, C = \{1\}.$

Problem 5(d). We have $A = \{-4, -3, -2, ..., 4\}, B = \emptyset = E$, and $C = \{2, 0, -2\} = D$.

Date: 3 October 2011.