MATH 052: INTRODUCTION TO PROOFS EXAM \#1

Problem 1(a). False. Valid expressions would be $P \wedge(\sim Q)$ or $P \wedge(\sim Q \vee R)$.
Problem 1(b). The implication is true, because the hypothesis is false.
Problem 1(c). The contrapositive is "If f is not continuous at $c \in \mathbb{R}$, then f is not differentiable at $c \in \mathbb{R}$ ".
Problem 1(d). There are 4 elements-no repetitions in sets are allowed.
Problem 1(e). The negation of an implication $P \Rightarrow Q$, which is defined to be $\sim(P \wedge(\sim Q))$, is $P \wedge(\sim Q)$. So the negation is: "You earned a passing grade on the final exam and did not receive a passing grade for your final grade."

Problem 2(a). Fun with truth tables!

P	Q	R	$P \Rightarrow(Q \vee R)$	$(\sim P) \vee R$	$(\sim Q) \Rightarrow((\sim P) \vee R)$
F	F	F	T	T	T
F	F	T	T	T	T
F	T	F	T	T	T
F	T	T	T	T	T
T	F	F	F	F	F
T	F	T	T	T	T
T	T	F	T	F	T
T	T	T	T	T	T

Since the two columns have the same truth table, the sentential forms are logically equivalent.
Problem 2(b). A tautology is a sentential form which is true no matter what the values of the propositions. For example, $P \vee(\sim P)$ is a tautology.
Problem 3(a). This statement is true: we can take $y=5-x$.
Problem 3(b). In symbols, " $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x+y+3=8)$ ".
Problem 3(c). In symbols, the negation is " $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y+3 \neq 8)$ ".
Problem 3(d). In words, "There exists a real number x such that for all $y \in \mathbb{R}$ we have $x+y+3 \neq 8$."
Problem 4. Let $n \in \mathbb{Z}$ be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore

$$
4 n^{2}+n-2=4(2 k+1)^{2}+(2 k+1)-2=4\left(4 k^{2}+4 k+1\right)+(2 k+1)-2=2\left(8 k^{2}+9 k+1\right)+1
$$

Since $8 k^{2}+9 k+1 \in \mathbb{Z}$, by definition, $4 n^{2}+n-2$ is odd.
Problem 5(a). $A=\{x \in \mathbb{Z}:-2 \leq x \leq 3$ and $x \neq 0\}$.
Problem 5(b). $A \cup B=\{1,3,5,9,13,15\}, A \cap B=\{9\}$, and $A \backslash B=\{1,5,13\}$.
Problem 5(c). Take $A=\{1,\{1\}\}, B=\{1\}, C=\{1\}$.
Problem 5(d). We have $A=\{-4,-3,-2, . ., 4\}, B=\emptyset=E$, and $C=\{2,0,-2\}=D$.

