MATH 251: ABSTRACT ALGEBRA I IN CLASS REVIEW, EXAM \#2

Problem 1. True or false: if all subgroups H of a group G are normal, then G is abelian.

Problem 2. What are the cosets of the subgroup $H=\langle 4\rangle$ in $G=\mathbb{Z} / 12 \mathbb{Z}$? What is the isomorphism type of the quotient G / H ?

Problem 3. Let G be a finite group of odd order. How many elements of G are equal to their own inverse?

Problem 5. Let $G=Q_{8}$ and $H=\langle-1\rangle$. What is the order of $j H$ in G / H ?

Problem 6. Show that the map

$$
\begin{aligned}
\phi: G=\mathbb{R} & \rightarrow \mathbb{C}^{\times} \\
x & \mapsto e^{2 \pi i x}
\end{aligned}
$$

is a homomorphism. What are the image and kernel of ϕ ? What does the First Isomorphism Theorem tell you about $G / \operatorname{ker} \phi$?

