MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#9

Problems for all
Problem 1. Alice publishes her RSA public key: modulus $n=2038667$ and exponent $e=103$.
(a) Bob wants to send Alice the message $m=892383$. What ciphertext does Bob send to Alice?
(b) Alice knows that her modulus factors into a product of two primes, one of which is $p=1301$. Find a decryption exponent d for Alice.
(c) Alice receives the ciphertext $c=317730$ from Bob. Decrypt the message.

Problem 2. Alice uses the RSA public key modulus $n=p q=172205490419$. Through espionage, Eve discovers that $(p-1)(q-1)=172204660344$. Determine p, q.

Problem 3. Suppose Bob leaks his private decryption key d in RSA. Rather than generating a new modulus n, he decides to generate a new encryption key e and decryption key d. Is this safe?

Problem 4. Bob uses RSA to receive a single ciphertext b corresponding to the message a. Suppose that Eve can trick Bob into decrypting a single chosen ciphertext c which is not equal to b. Show how Eve can recover a.

Problem 5. Suppose that Alice and Bob have the same RSA modulus n and suppose that their encryption exponents e and f are relatively prime. Charles wants to send the message a to Alice and Bob, so he encrypts to get $b=a^{e}(\bmod n)$ and $c=a^{f}(\bmod n)$. Show how Eve can find a if she intercepts b and c.
Problem 6. Read Chapter 6 (pages 243-292) of The Code Book, and respond briefly to the following question: To whom would you give the credit for exhibiting the first public key cryptosystem?

Additional problems for 395A
Problem 7. A Carmichael number is an integer $n>1$ that is not prime with the property that for all $a \in \mathbb{Z}, a^{n} \equiv a(\bmod n)$. Prove that 561,1105, 1729 are Carmichael numbers. [Hint: Look at the proof of $a^{e d} \equiv a(\bmod n), n=p q$, in RSA. You may factor these numbers!]

Problem 8. In this exercise, we show why small encryption exponents should not be used in RSA. We take $e=3$. Three users with pairwise relatively prime moduli n_{1}, n_{2}, n_{3} all use the encryption exponent $e=3$. Suppose that the same message $a \in \mathbb{Z}_{>0}$ with $a<\min \left(n_{1}, n_{2}, n_{3}\right)$ is sent to each of them and Eve intercepts the ciphertexts $b_{i} \equiv a^{3}\left(\bmod n_{i}\right)$.
(a) Show that $0 \leq a^{3}<n_{1} n_{2} n_{3}$.
(b) Show how to use the Chinese remainder theorem to find $a^{3} \in \mathbb{Z}$ and therefore $a \in \mathbb{Z}$ (without factoring).
(c) Compute a if

$$
n_{1}=2469247531693, \quad n_{2}=11111502225583, \quad n_{3}=44444222221411
$$

and

$$
b_{1}=359335245251, \quad b_{2}=10436363975495, \quad b_{3}=5135984059593
$$

