MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#8

Problems for all

Problem 1. Let $k \geq 2$, let $A=(\mathbb{Z} / 2 \mathbb{Z})^{k}$, and define the maps

$$
\begin{aligned}
s, g: A \times A & \rightarrow A \times A \\
s(x, y) & =(y, x) \\
g(x, y) & = \begin{cases}(x, y), & y \neq(0,0, \ldots, 0) ; \\
(x+\underbrace{(1,1, \ldots, 1)}_{k},(0,0, \ldots, 0)), & y=(0,0, \ldots, 0) .\end{cases}
\end{aligned}
$$

(a) Prove that s^{2} and g^{2} are the identity on $A \times A$.
(b) Prove that $(s g)^{4}=s g s g s g s g$ moves only 3 elements of $A \times A$, i.e.

$$
\#\left\{(x, y) \in A \times A:(s g)^{4}(x, y) \neq(x, y)\right\}=3
$$

(c) Prove that $(s g)^{12}$ is the identity.

Problem 2. Encrypt the message 001100001010 using SDES and key 111000101. [Hint: After one round, the output is 001010010011 .]
Problem 3. Suppose the key for round 0 in AES consists of 128 bits, each of which is 0 . Show that the key for the first round is

$$
\left(\begin{array}{lllll}
01100010 & 01100010 & 01100010 & 01100010 \\
01100011 & 01100011 & 01100011 & 01100011 \\
01100011 & 01100011 & 01100011 & 01100011 \\
01100011 & 01100011 & 01100011 & 01100011
\end{array}\right) .
$$

Problem 4. In the Rijndael field $F=\mathbb{F}_{2}[X] /\left(X^{8}+X^{4}+X^{3}+X+1\right)$, where bytes are associated to polynomials modulo $X^{8}+X^{4}+X^{3}+X+1$, compute the product $01010010 \cdot 10010010 \in F$.

Problem 5.

(a) Find all monic irreducible polynomials of degree 4 in $\mathbb{F}_{2}[X]$.
(b) Verify that the Rijndael polynomial

$$
f(X)=X^{8}+X^{4}+X^{3}+X+1
$$

is irreducible in $\mathbb{F}_{2}[X]$. [Hint: If it has a factor, it must have degree at most 4.]
Problem 6. Put $f(X)=X^{8}+X^{4}+X^{3}+X+1 \in \mathbb{F}_{2}[X]$, and let

$$
a=00001100=X^{3}+X^{2} \in F=\mathbb{F}_{2}[X] /(f) .
$$

(a) Compute a^{5}.
(b) Find the inverse $f^{-1} \in F$ of $f=X^{2}=00000100$.
(c) Multiply $f^{-1} a$ and verify that $f^{-1} a=X+1$ in F.

Additional problems for 395A

Problem 7. For a bit string x, let \bar{x} denote the complementary string obtained by interchanging 0s to 1s, e.g., $\overline{101100}=010011$; equivalently, $\bar{x}=x+1111 \ldots$. Show that if (S)DES encrypts $E_{K}(x)=y$, then $E_{\bar{K}}(\bar{x})=\bar{y}$.
Problem 8. Let p be prime and define

$$
a_{n}(p)=\#\left\{f \in \mathbb{F}_{p}[X]: \operatorname{deg} f=n, f \text { monic irreducible }\right\} .
$$

(a) Show that $a_{2}(p)=\left(p^{2}-p\right) / 2$ and $a_{3}(p)=\left(p^{3}-p\right) / 3$.
(b) Use the equality

$$
\begin{equation*}
\sum_{d \mid n} d a_{d}(p)=p^{n} \tag{*}
\end{equation*}
$$

(which you may assume) to compute $a_{2}(n)$ for $n=1, \ldots, 10$.
(c) Use (*) to prove that

$$
\frac{p^{n}-2 p^{n / 2}}{n}<a_{n}(p) \leq \frac{p^{n}}{n} .
$$

Conclude that the probability that a random monic polynomial of degree n over \mathbb{F}_{p} is irreducible is roughly $1 / n$.

Computational challenge

Problem C. Write a computer program that performs one round of AES with a key size of 128 bits.

