MATH 295B/395A: CRYPTOGRAPHY HOMEWORK #3

PROBLEMS

Problem 1. Let $a, b \in \mathbb{Z}$.

- (a) Let $gcd(a, b) = g \neq 0$. Prove that gcd(a/g, b/g) = 1.
- (b) Prove that gcd(a + kb, b) = gcd(a, b) for all $k \in \mathbb{Z}$.

Problem 2.

- (a) Use the extended Euclidean algorithm to compute 367⁻¹ in (ℤ/1001ℤ)* and 1001⁻¹ in (ℤ/367ℤ)*. [Do this by hand.]
- (b) [Sage] Compute $314159265^{-1} \pmod{2718281828}$. [You may use a computer!]

Problem 3. Let $f_0 = f_1 = 1$ and $f_{i+1} = f_i + f_{i-1}$ for $i \ge 1$ denote the Fibonacci numbers.

- (a) Use the Euclidean algorithm to show that $gcd(f_i, f_{i-1}) = 1$ for all $i \ge 1$.
- (b) Find gcd(11111111, 11111).
- (c) Let $a = 111\cdots 11$ be formed with f_i repeated 1s and let $b = 111\cdots 11$ be formed with f_{i-1} repeated 1s. Find gcd(a, b). [Hint: Compare your computations in parts (a) and (b).]

Problem 4. The digits in base 16 are written with 10 = A, 11 = B, ..., 15 = F; e.g. $(9B)_{16} = 9 \cdot 16 + 11 = 155$. Write 12538 in binary and hexadecimal.

Problem 5. Let $a, b \in \mathbb{Z}_{>0}$ with a > b.

- (a) Show that a b can be computed in time $O(\log a)$.
- (b) Suppose that the Euclidean algorithm is performed on $r_0 = a, r_1 = b$ with successive quotients q_i defined by $r_{i-1} = q_i r_i + r_{i+1}$. Show (by induction) that $a \ge q_1 \cdots q_t$, so that $\log a \ge \sum_i \log q_i$. Conclude that the Euclidean algorithm runs in time $O((\log a)(\log b))$.

Additional problems for 395A

Problem 6. Let G be a finite group, and let $k \in G$. Define the encryption function

$$E_k: G \to G$$
$$g \mapsto kg$$

with $\mathcal{P} = \mathcal{C} = G$.

- (a) What is the decryption function D_k ? When is $E_k = D_k$? (b) If we define $E'_k : G \to G$ by $E'_k(g) = gk$, when is $E_k = E'_k$?

Problem 7. The ring $\mathbb{Z}[i] = \{x + yi : x, y \in \mathbb{Z}\}$ is Euclidean under the norm $N(x + yi) = x^2 + y^2$. Let $a, b \in \mathbb{Z}[i]$ be not both zero, and suppose N(a) > N(b). Show that the number of divisions performed in the Euclidean algorithm for $\mathbb{Z}[i]$ is $O(\log N(b))$.