MATH 295B/395A: CRYPTOGRAPHY HOMEWORK \#3

Problems

Problem 1. Let $a, b \in \mathbb{Z}$.
(a) Let $\operatorname{gcd}(a, b)=g \neq 0$. Prove that $\operatorname{gcd}(a / g, b / g)=1$.
(b) Prove that $\operatorname{gcd}(a+k b, b)=\operatorname{gcd}(a, b)$ for all $k \in \mathbb{Z}$.

Problem 2.

(a) Use the extended Euclidean algorithm to compute 367^{-1} in $(\mathbb{Z} / 1001 \mathbb{Z})^{*}$ and 1001^{-1} in $(\mathbb{Z} / 367 \mathbb{Z})^{*}$. [Do this by hand.]
(b) [Sage] Compute $314159265^{-1}(\bmod 2718281828)$. [You may use a computer!]

Problem 3. Let $f_{0}=f_{1}=1$ and $f_{i+1}=f_{i}+f_{i-1}$ for $i \geq 1$ denote the Fibonacci numbers.
(a) Use the Euclidean algorithm to show that $\operatorname{gcd}\left(f_{i}, f_{i-1}\right)=1$ for all $i \geq 1$.
(b) Find $\operatorname{gcd}(11111111,11111)$.
(c) Let $a=111 \cdots 11$ be formed with f_{i} repeated 1 s and let $b=111 \cdots 11$ be formed with f_{i-1} repeated 1s. Find $\operatorname{gcd}(a, b)$. [Hint: Compare your computations in parts (a) and (b).]

Problem 4. The digits in base 16 are written with $10=A, 11=B, \ldots, 15=F$; e.g. $(9 B)_{16}=9 \cdot 16+11=155$. Write 12538 in binary and hexadecimal.
Problem 5. Let $a, b \in \mathbb{Z}_{>0}$ with $a>b$.
(a) Show that $a-b$ can be computed in time $O(\log a)$.
(b) Suppose that the Euclidean algorithm is performed on $r_{0}=a, r_{1}=b$ with successive quotients q_{i} defined by $r_{i-1}=q_{i} r_{i}+r_{i+1}$. Show (by induction) that $a \geq q_{1} \cdots q_{t}$, so that $\log a \geq \sum_{i} \log q_{i}$. Conclude that the Euclidean algorithm runs in time $O((\log a)(\log b))$.

Problem 6. Let G be a finite group, and let $k \in G$. Define the encryption function

$$
\begin{aligned}
E_{k}: G & \rightarrow G \\
g & \mapsto k g
\end{aligned}
$$

with $\mathcal{P}=\mathcal{C}=G$.
(a) What is the decryption function D_{k} ? When is $E_{k}=D_{k}$?
(b) If we define $E_{k}^{\prime}: G \rightarrow G$ by $E_{k}^{\prime}(g)=g k$, when is $E_{k}=E_{k}^{\prime}$?

Problem 7. The ring $\mathbb{Z}[i]=\{x+y i: x, y \in \mathbb{Z}\}$ is Euclidean under the norm $N(x+y i)=$ $x^{2}+y^{2}$. Let $a, b \in \mathbb{Z}[i]$ be not both zero, and suppose $N(a)>N(b)$. Show that the number of divisions performed in the Euclidean algorithm for $\mathbb{Z}[i]$ is $O(\log N(b))$.

