MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I WORKSHEET \#3 (PROOF WORKSHOP \#2)

Problem 1. Let $A \subseteq \mathbb{R}$ be a nonempty open set. Show that $A \cap \mathbb{Q} \neq \emptyset$.
Problem 2. Prove that a connected set E with at least two distinct elements has no isolated points.
Problem 3. Let $f: A \rightarrow \mathbb{R}$ be a function. Suppose there exists $\lambda \in \mathbb{R}_{>0}$ such that

$$
|f(x)-f(y)| \leq \lambda|x-y|
$$

for all $x, y \in A$. Show that f is uniformly continuous.
Problem 4. Let $f, g: A \rightarrow \mathbb{R}$ be continuous functions. Define the function $h: A \rightarrow \mathbb{R}$ by $h(x)=\max (f(x), g(x))$. Show that h is continuous.
Problem 5. Let $A, B \subset \mathbb{R}$. Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.

