MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I WORKSHEET \#2: EXAM \#1 REVIEW

Problem 1. Mark each as true or false. Briefly justify your answer.
(a) For any $y \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $1 / n<y$.
(b) If S is a set and $f: \mathbb{N} \rightarrow S$ is injective but not surjective, then S is uncountable.
(c) If $a_{n} \rightarrow 0$, then for every $\epsilon>0$, there exists $N \in \mathbb{R}$ such that $n>N$ implies $a_{n}<\epsilon$.
(d) Let $A \subseteq \mathbb{R}$ be bounded and nonempty, and let $c \in \mathbb{R}$. Define $c A=\{c a: a \in A\}$. Then $\sup (c A)=c \sup A$.

Problem 2. Suppose $\sum_{n} a_{n}$ diverges. Show that $\sum_{n} n a_{n}$ also diverges.

Problem 3. Prove that the sequence a_{n} defined by $a_{1}=1$ and $a_{n+1}=\sqrt{1+a_{n}}$ converges and find its limit.

Problem 4. Suppose that $\lim a_{n}=a$ with $a>0$. Show that there exists $N \in \mathbb{N}$ such that $a_{n}>0$ for all $n \geq N$.

