MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I WORKSHEET #2: EXAM #1 REVIEW

Problem 1. Mark each as true or false. Briefly justify your answer.

(a) For any $y \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that 1/n < y.

(b) If S is a set and $f : \mathbb{N} \to S$ is injective but not surjective, then S is uncountable.

(c) If $a_n \to 0$, then for every $\epsilon > 0$, there exists $N \in \mathbb{R}$ such that n > N implies $a_n < \epsilon$.

(d) Let $A \subseteq \mathbb{R}$ be bounded and nonempty, and let $c \in \mathbb{R}$. Define $cA = \{ca : a \in A\}$. Then $\sup(cA) = c \sup A$.

Date: October 4, 2010.

Problem 2. Suppose $\sum_{n} a_n$ diverges. Show that $\sum_{n} na_n$ also diverges.

Problem 3. Prove that the sequence a_n defined by $a_1 = 1$ and $a_{n+1} = \sqrt{1 + a_n}$ converges and find its limit.

Problem 4. Suppose that $\lim a_n = a$ with a > 0. Show that there exists $N \in \mathbb{N}$ such that $a_n > 0$ for all $n \ge N$.