MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I WORKSHEET, DAY \#1

Problem 1. If $\frac{a}{b}<\frac{c}{d}$ with $b>0$ and $d>0$, show that $\frac{a+c}{b+d}$ lies between $\frac{a}{b}$ and $\frac{c}{d}$.
Solution. Suppose that $a / b<c / d$. Since $b d>0$, multiplying by $b d$ we obtain $a d<b c$. Therefore

$$
a(b+d)=a b+a d<a b+b c=b(a+c) .
$$

Since $b(b+d)>0$, dividing we obtain $a / b<(a+c) /(b+d)$, as desired. The other inequality follows similarly: we have

$$
d(a+c)=a d+c d<b c+c d=c(b+d)
$$

so $(a+c) /(b+d)<c / d$.

Problem 2. Let

$$
S=\{x: x=5 n \text { for some integer } n\}
$$

and let

$$
T=\{x: x=10 n \text { for some integer } n\} .
$$

Show in detail that $T \subset S$.
Solution. Let $x \in T$. Then $x=10 n$ for some $n \in \mathbb{Z}$. Thus $x=5(2 n)$ and $2 n \in \mathbb{Z}$, so $x \in S$. Thus $T \subset S$.
Problem 3. How many functions are there from the set $\{1,2,3, \ldots, n\}$ to the set $\{\square, \diamond, \Delta\}$?
Solution. For each x in the domain $\{1, \ldots, n\}$, we have 3 choices for its image. Therefore there are $3 n$ possible functions, as each of these is distinct.
Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=x+1$.
(a) Give formulas which define the maps $f \circ g$ and $g \circ f$, distinguishing which is which.
(b) Is map f injective (one-to-one), surjective (onto), or bijective (a one-to-one correspondence)? What about g ?

Solution. For (a), we have $(f \circ g)(x)=f(g(x))=f(x+1)=(x+1)^{2}$ and $(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=x^{2}+1$.
For (b), the map f is not injective, as $f(1)=f(-1)=1$, and is not surjective, since there is no $x \in \mathbb{R}$ such that $f(x)=-1$; consequently f is also not bijective. The map g is bijective (so both injective and surjective) because it has an inverse, namely $h(x)=x-1$, which is to say $h \circ f=f \circ h$ is the identity map on \mathbb{R}.

[^0]
[^0]: Date: Monday, 30 August 2010.

