MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I HOMEWORK #8

A problem with a * will be graded as usual. A problem without a * will be merely checked for some completeness.

PROBLEMS

4.2.1(a) 4.2.1(c)* 4.2.3(b) 4.2.6* 4.3.2(a)* 4.3.2(b) 4.3.4 4.3.7* 4.3.12

Graduate student problems

4.3.A*: Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Show that f(x) = kx for some $k \in \mathbb{R}$. Conclude that the only continuous group automorphism f of \mathbb{R} with f(1) = 1 (hence the only continuous ring automorphism of \mathbb{R}) is the identity. [Hint: See Exercise 4.3.10.]

4.3.B: Let $f:[a,b] \to \mathbb{R}$ be an *increasing* function, i.e. $f(x) \le f(y)$ whenever $x \le y$.

- (a) Let $c \in [a, b]$. Show that $\lim_{x \to c^-} f(x)$ exists, i.e. for all sequences (x_n) with $x_n \to x$ and $x_n < x$ for all n, the limit $\lim_{x \to c^+} f(x)$ exists and this limit is independent of the choice of sequence (x_n) . Conclude similarly that $\lim_{x \to c^+} f(x)$ exists.
- (b) Define the jump function $j:[a,b] \to \mathbb{R}$ defined by $j(c) = \lim_{x\to c^+} f(x) \lim_{x\to c^-} f(x)$. Show that $j(c) \geq 0$ for all $c \in [a,b]$. For any $\epsilon > 0$, show that there are at most finitely many points $c \in [a,b]$ such that $j(c) \geq \epsilon$.
- (c) Conclude that if f is a monotone function on [a,b] then f has at most countably many discontinuities, i.e. the set $\{c \in [a,b] : f \text{ is not continuous at } c\}$ is finite or countable.