MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I FINAL EXAM

Name

Problem	Score	Problem	Score
1		6	
2		7	
3		8	
4		9	
5			

Total \qquad

Problem 1. Let $t \in \mathbb{R}$. Compute

$$
\lim _{n \rightarrow \infty} \frac{1}{t n+1}
$$

and prove that your answer is correct using the definition.

Problem 2. Mark each as true or false. Briefly justify your answer.
(a) The map

$$
\begin{aligned}
d: \mathbb{R} \times \mathbb{R} & \rightarrow \mathbb{R}_{\geq 0} \\
d(x, y) & =|x-y|^{2}
\end{aligned}
$$

is a metric on \mathbb{R}.
(b) For $n \in \mathbb{N}$, let $A_{n} \subseteq \mathbb{R}$ be not open. Then $\bigcup_{n=0}^{\infty} A_{n}$ is not open.
(c) If x is a limit point of $A \subseteq \mathbb{R}$, then every neighborhood of x contains infinitely many points of A.
(d) If $\lim x_{n}=0$ and $\left(y_{n}\right)$ is unbounded, then $\lim x_{n} y_{n}$ does not exist.
(e) If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and $f(x)=g(x)$ for all $x \in \mathbb{Q}$, then $f=g$.

Problem 3. Let $f_{n}: A \rightarrow \mathbb{R}$ be uniformly continuous functions for $n \in \mathbb{N}$. Suppose that $f_{n} \rightarrow f$ uniformly. Prove that f is uniformly continuous.

Problem 4. Mark each as true or false. Briefly justify your answer.
(a) Every nonempty compact set is uncountable.
(b) For $n \in \mathbb{N}$, let B_{n} be a finite set. Then $\bigcup_{n=0}^{\infty} B_{n}$ is countable.
(c) If $A \subseteq \mathbb{Q}$ is connected then A is closed.
(d) If $f:[0,1] \rightarrow \mathbb{R}$ is bounded and attains its maximum value, then f attains its minimum value.
(e) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then $\{x \in \mathbb{R}: f(x)>0\}$ is open.

Problem 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x\left|x^{2}+x\right|$.
(a) Prove using the definition that f differentiable at $x=0$.
(b) Is f twice differentiable at $x=0$?

Problem 6. Let

$$
f(x)=\sum_{n=0}^{\infty} x^{n} \cos (n x)=1+x \cos (x)+x^{2} \cos (2 x)+\ldots .
$$

(a) Show that f is continuous on $[-1 / 2,1 / 2]$.
(b) Show that f is differentiable on $(-1 / 2,1 / 2)$.

Problem 7. Let $f:[0,2] \rightarrow \mathbb{R}$ be a continuous map and suppose $f(1)<f(0)<f(2)$. Show that there exist $x, y \in(0,2)$ such that $x-y=1$ and $f(x)=f(y)$.

Problem 8.

(a) Prove that $(x+y) / 2 \geq \sqrt{x y}$ for all $x, y>0$. [Hint: Start with $(\sqrt{x}-\sqrt{y})^{2} \geq 0$.]
(b) Let $a_{0}, b_{0}>0$ and for $n \geq 0$, define $a_{n+1}=\sqrt{a_{n} b_{n}}$ and $b_{n+1}=\left(a_{n}+b_{n}\right) / 2$. Show that the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge
(c) Show that $\lim a_{n}=\lim b_{n}$.

Problem 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and suppose that f^{\prime} is bounded. Show that f is uniformly continuous. [Hint: Use the mean value theorem.]

