MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I FINAL EXAM

Name _____

Problem	Score	Problem	Score
1		6	
2		7	
3		8	
4		9	
5			

Total _____

Date: Friday, 17 December 2010.

Problem 1. Let $t \in \mathbb{R}$. Compute

 $\lim_{n \to \infty} \frac{1}{tn+1}$

and prove that your answer is correct using the definition.

- Problem 2. Mark each as true or false. Briefly justify your answer.
 - (a) The map

$$d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$$
$$d(x, y) = |x - y|^2$$

is a metric on \mathbb{R} .

(b) For $n \in \mathbb{N}$, let $A_n \subseteq \mathbb{R}$ be not open. Then $\bigcup_{n=0}^{\infty} A_n$ is not open.

(c) If x is a limit point of $A \subseteq \mathbb{R}$, then every neighborhood of x contains infinitely many points of A.

(d) If $\lim x_n = 0$ and (y_n) is unbounded, then $\lim x_n y_n$ does not exist.

(e) If $f, g: \mathbb{R} \to \mathbb{R}$ are continuous functions and f(x) = g(x) for all $x \in \mathbb{Q}$, then f = g.

Problem 3. Let $f_n : A \to \mathbb{R}$ be uniformly continuous functions for $n \in \mathbb{N}$. Suppose that $f_n \to f$ uniformly. Prove that f is uniformly continuous.

- **Problem 4**. Mark each as true or false. Briefly justify your answer.
 - (a) Every nonempty compact set is uncountable.

(b) For $n \in \mathbb{N}$, let B_n be a finite set. Then $\bigcup_{n=0}^{\infty} B_n$ is countable.

(c) If $A \subseteq \mathbb{Q}$ is connected then A is closed.

(d) If $f : [0,1] \to \mathbb{R}$ is bounded and attains its maximum value, then f attains its minimum value.

(e) If $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $\{x \in \mathbb{R} : f(x) > 0\}$ is open.

Problem 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x|x^2 + x|$. (a) Prove using the definition that f differentiable at x = 0.

(b) Is f twice differentiable at x = 0?

Problem 6. Let

$$f(x) = \sum_{n=0}^{\infty} x^n \cos(nx) = 1 + x \cos(x) + x^2 \cos(2x) + \dots$$

(a) Show that f is continuous on [-1/2, 1/2].

(b) Show that f is differentiable on (-1/2, 1/2).

Problem 7. Let $f : [0,2] \to \mathbb{R}$ be a continuous map and suppose f(1) < f(0) < f(2). Show that there exist $x, y \in (0,2)$ such that x - y = 1 and f(x) = f(y).

Problem 8.

(a) Prove that $(x+y)/2 \ge \sqrt{xy}$ for all x, y > 0. [Hint: Start with $(\sqrt{x} - \sqrt{y})^2 \ge 0$.]

(b) Let $a_0, b_0 > 0$ and for $n \ge 0$, define $a_{n+1} = \sqrt{a_n b_n}$ and $b_{n+1} = (a_n + b_n)/2$. Show that the sequences (a_n) and (b_n) converge.

(c) Show that $\lim a_n = \lim b_n$.

Problem 9. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable and suppose that f' is bounded. Show that f is uniformly continuous. [Hint: Use the mean value theorem.]