
MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I
FINAL EXAM

Problem 1. Let an = 1/(tn + 1). First, if t = 0, then the sequence is constant and an = 1 for all n ∈ N:
then, given any ε > 0, we can take N = 1 and |an − 1| = 0 < ε.

If t 6= 0, then we claim an → 0. Let ε > 0 and let N > 1/(|t|ε). Then if n ≥ N we have

∣∣∣∣ 1
tn + 1

− 0
∣∣∣∣ <

1
|t|n

≤ 1
|t|N

< ε.

Problem 2. Statement (a) is false, since the triangle inequality is invalid: we have d(0, 2) = 4 > d(0, 1) +
d(1, 2) = 1 + 1 = 2. Statement (b) is false: take for example An = [1/(n + 1), 1), then

⋃∞
n=1 An = (0, 1)

(by the Archimedean property of R, if you insist), which is open. Also, we can take An = [−n, n] for then⋃∞
n=1 An = R which is open. Statement (c) is true: there is a sequence (an) from A with an → x, and by the

topological characterization of convergence, every neighborhood of x contains all but finitely many elements
of (an). Statement (d) is false, for example xn = 1/n2 and yn = n so that xnyn = 1/n → 0. Statement (e)
is true: if x ∈ R, then there is a sequence xn → x with xn ∈ Q for all x since Q is dense in R, so since f and
g are continuous, we have f(x) = lim f(xn) = lim g(xn) = g(x).

Problem 3. This was Exercise 6.2.7. Let ε > 0. Since fn → f uniformly, there exists N ∈ N such that
|fn(x)− f(x)| < ε/3 for all n ≥ N and all x ∈ A. Since fN is uniformly continuous, there exists δ > 0 such
that |fN (x)− fN (y)| < ε/3 for all x, y ∈ A with |x− y| < δ. Thus, for all x, y ∈ A with |x− y| < δ, we have

|f(x)− f(y)| < |f(x)− fN (x)|+ |fN (x) + fN (y)|+ |fN (y)− f(y)| < ε/3 + ε/3 + ε/3 = ε.

So f is uniformly continuous.

Problem 4. Statement (a) is false: a finite set is closed and bounded but not uncountable. Statement (b)
is false: we need the sets to be nonempty and disjoint, and then it is a theorem. Statement (c) is true. We
claim that #A ≤ 1, so A is finite so closed. Indeed, if a, b ∈ A with a < b, then by the density of Q in R there
exists x ∈ R \Q such that a < x < b and since A is connected we have x ∈ A, a contradiction since A ⊆ Q.
Statement (d) is false: take f(x) = |x| if x = 0 and f(0) = 1. (We need f to be continuous.) Statement (e)
is true: we have {x ∈ R : f(x) > 0} = f−1(R>0); since R>0 is open and f is continuous, f−1(R>0) is open.

Problem 5. For (a), at x = 0, we claim that f ′(0) = 0. We note that

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

f(x)
x

.

Let ε > 0. Let δ = min(1, ε/2). Then if |x| < δ then |x + 1| ≤ |x|+ 1 < 2, so

∣∣∣∣f(x)
x

∣∣∣∣ = |x2 + x| = |x||x + 1| < 2|x| < ε.
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For (b), we compute that

f(x) = x|x(x + 1)| =

{
−(x3 + x2), if −1 < x < 0;
x3 + x2, if x > 0.

Thus
f ′(x)

x
=

{
−(3x + 2), if −1 < x < 0;
3x + 2, if x > 0.

We claim that f ′(x) is not differentiable at x = 0. Let xn = 1/n and yn = −1/n for n ∈ N≥1. Then
lim f ′(xn)/xn = lim−(3xn+2) = −2 by the algebraic limit theorem, but lim f ′(yn)/yn = lim 3(−1/n)+2 = 2.
By the sequential criterion, f ′′(0) = lim f ′(x)/x does not exist.

Problem 6. Note that f is not a power series. Let fn(x) = xn cos(nx). For (a), we have |fn(x)| =
|xn cos(nx)| ≤ (1/2)n = Mn and

∑∞
n=1 1/2n is a convergent geometric series, so by the Weierstrass M -test,

the series converges uniformly so by our theorem the function f is continuous on [−1/2, 1/2].
For (b), we have f ′n(x) = nxn−1 cos(nx)− nxn sin(nx) = nxn−1(cos(nx) + x sin(nx)). We have

|f ′n(x)| < n(1/2)n−1(1 + 1/2) = 3n/2n = Mn.

The series
∑∞

n=1 3n/2n converges by the ratio test, since

lim
3(n + 1)

2n+1
· 2n

3n
= 1/2 < 1.

Or, this series is 3/2 times the value of the power series
∑∞

n=1 nxn−1 = (1/(1−x))′ = 1/(1−x)2 at x = 1/2;
term-by-term differentiation is valid by our classwork (for what it’s worth, we obtain an exact value for the
series in this way). By the Weierstrass M -test again, the series converges.

Problem 7. Let g(x) = f(x) − f(x − 1). Then g is continuous on [1, 2] and g(1) = f(1) − f(0) < 0
and g(2) = f(2) − f(1) > 0. By the intermediate value theorem, there exists x ∈ (1, 2) such that g(x) =
f(x)− f(x− 1) = 0, so f(x) = f(y) where y = x− 1 so x− y = 1.

Problem 8. For part (a), we have (
√

x −√
y)2 = x − 2

√
xy + y ≥ 0 so (x + y)/2 ≥ √

xy, with equality if
and only if x = y.

For part (b), first we have an ≤ bn by part (a). Thus an+1 =
√

anbn ≥
√

a2
n = an for all n, so (an) is

increasing. Similarly, bn+1 = (an + bn)/2 ≤ (bn + bn)/2 = bn for all n so (bn) is decreasing. The sequence
(an) is bounded above by b1 since a1 ≤ an ≤ bn ≤ b1 and similarly (bn) is bounded below by a1, so by the
monotone convergence theorem, the sequences (an) and (bn) are convergent.

For part (c), if lim an = a and lim bn = b, we have b = lim bn+1 = lim(an + bn)/2 = (a + b)/2 by the
algebraic limit theorem, so a = b.

Problem 9. Suppose |f ′(c)| ≤ M for all c ∈ R. For all x, y ∈ R with x 6= y, by the mean value theorem,
there exists c ∈ R such that (f(x)− f(y))/(x− y) = f ′(c), so |f(x)− f(y)|/|x− y| = |f ′(c)| ≤ M .

Let ε > 0 and let δ = ε/M . Then, if |x− y| < δ (and x 6= y) we have

|f(x)− f(y)| = |f(x)− f(y)|
|x− y|

|x− y| < M
ε

M
= ε.


