MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES 1
FINAL EXAM

Problem 1. Let a, = 1/(tn +1). First, if ¢ = 0, then the sequence is constant and a, =1 for all n € N:
then, given any € > 0, we can take N =1 and |a, — 1| =0 < e.
If ¢ # 0, then we claim a,, — 0. Let € > 0 and let N > 1/(|¢|¢). Then if n > N we have

1
—— 0 < — < ——=<e
tn+ 1 ’ it = N €

Problem 2. Statement (a) is false, since the triangle inequality is invalid: we have d(0,2) =4 > d(0,1) +
d(1,2) =1+ 1 = 2. Statement (b) is false: take for example A, = [1/(n + 1),1), then ;- ; A, = (0,1)
(by the Archimedean property of R, if you insist), which is open. Also, we can take A, = [—n,n] for then
U~ A, = R which is open. Statement (c) is true: there is a sequence (a,,) from A with a,, — z, and by the
topological characterization of convergence, every neighborhood of x contains all but finitely many elements
of (ay). Statement (d) is false, for example z,, = 1/n? and y,, = n so that z,y, = 1/n — 0. Statement (e)
is true: if z € R, then there is a sequence x,, — x with x,, € Q for all = since Q is dense in R, so since f and

g are continuous, we have f(z) = lim f(x,) = limg(z,) = g(z).

Problem 3. This was Exercise 6.2.7. Let ¢ > 0. Since f,, — f uniformly, there exists N € N such that
|fr(x) — f(z)| <€¢/3 for all n > N and all x € A. Since fy is uniformly continuous, there exists 6 > 0 such
that |fn(z) — fn(y)| < €/3 for all z,y € A with | —y| < . Thus, for all z,y € A with | — y| < §, we have

[f(@) = fWl < [f (@) = fn (@) + v (@) + In@)] + [ (y) — fy)l <e/3+e/3+¢/3=¢

So f is uniformly continuous.

Problem 4. Statement (a) is false: a finite set is closed and bounded but not uncountable. Statement (b)
is false: we need the sets to be nonempty and disjoint, and then it is a theorem. Statement (c) is true. We
claim that #A < 1, so A is finite so closed. Indeed, if a,b € A with a < b, then by the density of Q in R there
exists © € R\ Q such that a < x < b and since A is connected we have x € A, a contradiction since A C Q.
Statement (d) is false: take f(z) = |z| if x = 0 and f(0) = 1. (We need f to be continuous.) Statement (e)
is true: we have {x € R: f(x) > 0} = f~1(Rs); since Rsq is open and f is continuous, f~(R~) is open.

Problem 5. For (a), at = 0, we claim that f'(0) = 0. We note that

x—0 r—0 z—0 X

£(0) = lim f(z) - (0) = lim f(@)
Let € > 0. Let 6 = min(1,€/2). Then if |z| < 0 then |z + 1| < |z]+1 < 2, s0

e

= 2% 42| = |z||]z + 1] < 2Jz| < e
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For (b), we compute that
—(x®*+2?), f-1<z<0;
f(x) = z|z(z + 1) {x3+x2’ x>0,
Thus
fx) J-Bz+2), if-1<z<0;
T |3z+2, if 2> 0.
We claim that f’(z) is not differentiable at * = 0. Let =, = 1/n and y, = —1/n for n € N>;. Then

lim f/(2,,) /2, = lim —(32,+2) = —2 by the algebraic limit theorem, but lim f'(y,,)/y, = lim 3(—1/n)+2 = 2.
By the sequential criterion, f”(0) = lim f’(x)/x does not exist.

Problem 6. Note that f is not a power series. Let f,(z) = x™cos(nx). For (a), we have |f,(x)| =
|z" cos(nz)| < (1/2)" = M,, and ) >, 1/2™ is a convergent geometric series, so by the Weierstrass M-test,
the series converges uniformly so by our theorem the function f is continuous on [—1/2,1/2].

For (b), we have f/ (x) = na" ! cos(nz) — na" sin(nz) = na"*(cos(nz) + xsin(nx)). We have

|fh(x)] <n(1/2)" "1 (14 1/2) = 3n/2" = M,.
The series Y -, 3n/2" converges by the ratio test, since

. 3(n+1) 2»
Or, this series is 3/2 times the value of the power series >~ nz" ' = (1/(1—2)) =1/(1—z)? at z = 1/2;
term-by-term differentiation is valid by our classwork (for what it’s worth, we obtain an exact value for the
series in this way). By the Weierstrass M-test again, the series converges.

Problem 7. Let g(x) = f(z) — f(x —1). Then g is continuous on [1,2] and g(1) = f(1) — f(0) < 0
and ¢g(2) = f(2) — f(1) > 0. By the intermediate value theorem, there exists x € (1,2) such that g(z) =
fl@)—f(x—1)=0,s0 f(z) = f(y) wherey=a —1sox—y=1.

Problem 8. For part (a), we have (y/z — /y)? =z —2,/Zy +y > 0 so (z +y)/2 > /2y, with equality if
and only if z = y.

For part (b), first we have a,, < b, by part (a). Thus a,11 = Va,b, > \/OT% = a, for all n, so (a,) is
increasing. Similarly, b,+1 = (a, + by,)/2 < (b, + by)/2 = by, for all n so (by,) is decreasing. The sequence
(an) is bounded above by b; since ay < a,, < b, < b; and similarly (b,) is bounded below by a;, so by the
monotone convergence theorem, the sequences (a,) and (b,) are convergent.

For part (c), if lima, = a and limb,, = b, we have b = limb,,41 = lim(a,, + b,)/2 = (a + b)/2 by the
algebraic limit theorem, so a = b.

Problem 9. Suppose |f'(c)| < M for all ¢ € R. For all z,y € R with « # y, by the mean value theorem,

there exists ¢ € R such that (f(z) — f(y))/(z —y) = f'(c), so |f(x) = f(y)l/|z —y| = |f'(c)] < M.
Let € > 0 and let 6 = ¢/M. Then, if |z — y| < J (and x # y) we have

) MOl
1) = S = PR =yl < M = e



