MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I FINAL EXAM

Problem 1. Let $a_{n}=1 /(t n+1)$. First, if $t=0$, then the sequence is constant and $a_{n}=1$ for all $n \in \mathbb{N}$: then, given any $\epsilon>0$, we can take $N=1$ and $\left|a_{n}-1\right|=0<\epsilon$.

If $t \neq 0$, then we claim $a_{n} \rightarrow 0$. Let $\epsilon>0$ and let $N>1 /(|t| \epsilon)$. Then if $n \geq N$ we have

$$
\left|\frac{1}{t n+1}-0\right|<\frac{1}{|t| n} \leq \frac{1}{|t| N}<\epsilon
$$

Problem 2. Statement (a) is false, since the triangle inequality is invalid: we have $d(0,2)=4>d(0,1)+$ $d(1,2)=1+1=2$. Statement (b) is false: take for example $A_{n}=[1 /(n+1), 1)$, then $\bigcup_{n=1}^{\infty} A_{n}=(0,1)$ (by the Archimedean property of \mathbb{R}, if you insist), which is open. Also, we can take $A_{n}=[-n, n]$ for then $\bigcup_{n=1}^{\infty} A_{n}=\mathbb{R}$ which is open. Statement (c) is true: there is a sequence $\left(a_{n}\right)$ from A with $a_{n} \rightarrow x$, and by the topological characterization of convergence, every neighborhood of x contains all but finitely many elements of $\left(a_{n}\right)$. Statement (d) is false, for example $x_{n}=1 / n^{2}$ and $y_{n}=n$ so that $x_{n} y_{n}=1 / n \rightarrow 0$. Statement (e) is true: if $x \in \mathbb{R}$, then there is a sequence $x_{n} \rightarrow x$ with $x_{n} \in \mathbb{Q}$ for all x since \mathbb{Q} is dense in \mathbb{R}, so since f and g are continuous, we have $f(x)=\lim f\left(x_{n}\right)=\lim g\left(x_{n}\right)=g(x)$.

Problem 3. This was Exercise 6.2.7. Let $\epsilon>0$. Since $f_{n} \rightarrow f$ uniformly, there exists $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon / 3$ for all $n \geq N$ and all $x \in A$. Since f_{N} is uniformly continuous, there exists $\delta>0$ such that $\left|f_{N}(x)-f_{N}(y)\right|<\epsilon / 3$ for all $x, y \in A$ with $|x-y|<\delta$. Thus, for all $x, y \in A$ with $|x-y|<\delta$, we have

$$
|f(x)-f(y)|<\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)+f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right|<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon
$$

So f is uniformly continuous.
Problem 4. Statement (a) is false: a finite set is closed and bounded but not uncountable. Statement (b) is false: we need the sets to be nonempty and disjoint, and then it is a theorem. Statement (c) is true. We claim that $\# A \leq 1$, so A is finite so closed. Indeed, if $a, b \in A$ with $a<b$, then by the density of \mathbb{Q} in \mathbb{R} there exists $x \in \mathbb{R} \backslash \mathbb{Q}$ such that $a<x<b$ and since A is connected we have $x \in A$, a contradiction since $A \subseteq \mathbb{Q}$. Statement (d) is false: take $f(x)=|x|$ if $x=0$ and $f(0)=1$. (We need f to be continuous.) Statement (e) is true: we have $\{x \in \mathbb{R}: f(x)>0\}=f^{-1}\left(\mathbb{R}_{>0}\right)$; since $\mathbb{R}_{>0}$ is open and f is continuous, $f^{-1}\left(\mathbb{R}_{>0}\right)$ is open.
Problem 5. For (a), at $x=0$, we claim that $f^{\prime}(0)=0$. We note that

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

Let $\epsilon>0$. Let $\delta=\min (1, \epsilon / 2)$. Then if $|x|<\delta$ then $|x+1| \leq|x|+1<2$, so

$$
\left|\frac{f(x)}{x}\right|=\left|x^{2}+x\right|=|x||x+1|<2|x|<\epsilon
$$

For (b), we compute that

$$
f(x)=x|x(x+1)|= \begin{cases}-\left(x^{3}+x^{2}\right), & \text { if }-1<x<0 \\ x^{3}+x^{2}, & \text { if } x>0\end{cases}
$$

Thus

$$
\frac{f^{\prime}(x)}{x}= \begin{cases}-(3 x+2), & \text { if }-1<x<0 \\ 3 x+2, & \text { if } x>0\end{cases}
$$

We claim that $f^{\prime}(x)$ is not differentiable at $x=0$. Let $x_{n}=1 / n$ and $y_{n}=-1 / n$ for $n \in \mathbb{N}_{\geq 1}$. Then $\lim f^{\prime}\left(x_{n}\right) / x_{n}=\lim -\left(3 x_{n}+2\right)=-2$ by the algebraic limit theorem, but $\lim f^{\prime}\left(y_{n}\right) / y_{n}=\lim 3(-1 / n)+2=2$. By the sequential criterion, $f^{\prime \prime}(0)=\lim f^{\prime}(x) / x$ does not exist.
Problem 6. Note that f is not a power series. Let $f_{n}(x)=x^{n} \cos (n x)$. For (a), we have $\left|f_{n}(x)\right|=$ $\left|x^{n} \cos (n x)\right| \leq(1 / 2)^{n}=M_{n}$ and $\sum_{n=1}^{\infty} 1 / 2^{n}$ is a convergent geometric series, so by the Weierstrass M-test, the series converges uniformly so by our theorem the function f is continuous on $[-1 / 2,1 / 2]$.

For (b), we have $f_{n}^{\prime}(x)=n x^{n-1} \cos (n x)-n x^{n} \sin (n x)=n x^{n-1}(\cos (n x)+x \sin (n x))$. We have

$$
\left|f_{n}^{\prime}(x)\right|<n(1 / 2)^{n-1}(1+1 / 2)=3 n / 2^{n}=M_{n}
$$

The series $\sum_{n=1}^{\infty} 3 n / 2^{n}$ converges by the ratio test, since

$$
\lim \frac{3(n+1)}{2^{n+1}} \cdot \frac{2^{n}}{3 n}=1 / 2<1
$$

Or, this series is $3 / 2$ times the value of the power series $\sum_{n=1}^{\infty} n x^{n-1}=(1 /(1-x))^{\prime}=1 /(1-x)^{2}$ at $x=1 / 2$; term-by-term differentiation is valid by our classwork (for what it's worth, we obtain an exact value for the series in this way). By the Weierstrass M-test again, the series converges.
Problem 7. Let $g(x)=f(x)-f(x-1)$. Then g is continuous on [1, 2] and $g(1)=f(1)-f(0)<0$ and $g(2)=f(2)-f(1)>0$. By the intermediate value theorem, there exists $x \in(1,2)$ such that $g(x)=$ $f(x)-f(x-1)=0$, so $f(x)=f(y)$ where $y=x-1$ so $x-y=1$.
Problem 8. For part (a), we have $(\sqrt{x}-\sqrt{y})^{2}=x-2 \sqrt{x y}+y \geq 0$ so $(x+y) / 2 \geq \sqrt{x y}$, with equality if and only if $x=y$.

For part (b), first we have $a_{n} \leq b_{n}$ by part (a). Thus $a_{n+1}=\sqrt{a_{n} b_{n}} \geq \sqrt{a_{n}^{2}}=a_{n}$ for all n, so (a_{n}) is increasing. Similarly, $b_{n+1}=\left(a_{n}+b_{n}\right) / 2 \leq\left(b_{n}+b_{n}\right) / 2=b_{n}$ for all n so $\left(b_{n}\right)$ is decreasing. The sequence $\left(a_{n}\right)$ is bounded above by b_{1} since $a_{1} \leq a_{n} \leq b_{n} \leq b_{1}$ and similarly $\left(b_{n}\right)$ is bounded below by a_{1}, so by the monotone convergence theorem, the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent.

For part (c), if $\lim a_{n}=a$ and $\lim b_{n}=b$, we have $b=\lim b_{n+1}=\lim \left(a_{n}+b_{n}\right) / 2=(a+b) / 2$ by the algebraic limit theorem, so $a=b$.
Problem 9. Suppose $\left|f^{\prime}(c)\right| \leq M$ for all $c \in \mathbb{R}$. For all $x, y \in \mathbb{R}$ with $x \neq y$, by the mean value theorem, there exists $c \in \mathbb{R}$ such that $(f(x)-f(y)) /(x-y)=f^{\prime}(c)$, so $|f(x)-f(y)| /|x-y|=\left|f^{\prime}(c)\right| \leq M$.

Let $\epsilon>0$ and let $\delta=\epsilon / M$. Then, if $|x-y|<\delta$ (and $x \neq y$) we have

$$
|f(x)-f(y)|=\frac{|f(x)-f(y)|}{|x-y|}|x-y|<M \frac{\epsilon}{M}=\epsilon .
$$

