MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM #2

Name _____

Problem	Score
1	
2	
3	
4	

Total _____

Date: Friday, 19 November 2010.

Problem 1 (5 points). Mark each as true or false. Briefly justify your answer.(a) Every bounded, infinite set A has a limit point.

(b) If $f: U \to \mathbb{R}$ is continuous and U is open then f(U) is open.

(c) Let $A \subseteq \mathbb{R}$ and let S be the set of isolated points of A. Then S is closed.

(d) If $f : [a, b] \to \mathbb{R}$ is continuous and $f(a) \le L \le f(b)$, then there exists $c \in (a, b)$ such that f(c) = L.

(e) If a set $A \subseteq \mathbb{R}$ has a maximum and a minimum, then A is compact.

Problem 2 (10 points). Let

$$f: \mathbb{R}_{\geq 0} \to \mathbb{R}$$
$$f(x) = \sqrt{x},$$

where $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}.$

(a) Prove that f is continuous, using the definition.

(b) Prove that f is uniformly continuous on [0, 1].

(c) Is the derivative f' of f uniformly continuous on its domain? Justify your answer rigorously.

Problem 3 (5 points). Let $f : A \to \mathbb{R}$ be a function and let c be a limit point of A. Suppose that

$$\lim_{x \to c} f(x) = L > 0.$$

Prove that there exists a neighborhood $U \subseteq \mathbb{R}$ of c such that f(x) > 0 for all $x \in U \cap A$.

Problem 4 (5 points). For $a \ge 0$, define $f_a : \mathbb{R} \to \mathbb{R}$ by $\begin{cases} x^a \sin(\log(x)), & \text{if } x > 0; \end{cases}$

$$f(x) = \begin{cases} x & \operatorname{sin}(\operatorname{rog}(x)), & \operatorname{if} x \neq 0, \\ 0, & \operatorname{if} x \leq 0. \end{cases}$$

(a) Compute f'(x) for $x \neq 0$. (You may use the familiar rules for differentiation.)

(b) Find a value $a \in \mathbb{N}$ such that f has a continuous derivative at c = 0, and prove rigorously that your answer is correct.