MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM #2

Problem 1. Statement (a) is true: since A is infinite, there is a sequence (a_n) with $a_n \in A$ and all a_n distinct; this sequence is bounded, so by Bolzano-Weierstrass, it has a convergent subsequence, and its limit is then a limit point of A. Statement (b) is false: what is true is $f^{-1}(U)$ is open whenever U is open. As shown in class, a counterexample is $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x/(1+x^2)$ which has $f(\mathbb{R}) = [0, 1/2]$. Statement (c) is true: every point of S is an isolated point so S has no limit points so S is closed. Statement (d) is false: we need a strict inequality f(a) < L < f(b) in order to ensure that $c \in (a, b)$; a counterexample is $f(x) = x^2$ which has f(-1) = f(1) = 1 but $f(c) \neq 1$ for all $c \in (-1, 1)$. Statement (e) is false: for example, $A = [0, 1) \cup (1, 2]$ is not compact since it is not closed, but max A = 2 and min A = 0.

Problem 2. For part (a), we treat two cases. First suppose c = 0. Let $\epsilon > 0$. Let $\delta = \epsilon^2$. Then, if $|x| < \delta$ then $|\sqrt{x}| < \epsilon$. Now assume c > 0. Let $\epsilon > 0$. Let $\delta = \epsilon \sqrt{c} > 0$. Then, if $|x - c| < \delta$ we have

$$|\sqrt{x} - \sqrt{c}| = \frac{|x - c|}{|\sqrt{x} + \sqrt{c}|} = \frac{|x - c|}{\sqrt{x} + \sqrt{c}} \le \frac{|x - c|}{\sqrt{c}} < \frac{\sqrt{c}\epsilon}{\sqrt{c}} = \epsilon.$$

For part (b), since f is continuous on [0,1] which is compact, f is uniformly continuous by our theorem. For part (c), we have $f'(x) = 1/(2\sqrt{x})$ defined on $\mathbb{R}_{>0}$. Consider the sequences $(x_n), (y_n)$ where $x_n = 1/n^2$ and $y_n = 1/(n+1)^2$. Then $x_n, y_n \to 0$ so $|x_n - y_n| \to 0$ but $|f'(x_n) - f'(y_n)| = |n/2 - (n+1)/2| = 1/2$. So f' is not uniformly continuous on $\mathbb{R}_{>0}$ by the sequential criterion.

Problem 3. Let $\epsilon = L > 0$. Since $\lim_{x \to c} f(x) = L$ exists, there exists $\delta > 0$ such that |f(x) - L| < L whenever $0 < |x - c| < \delta$ and $x \in A$. Let $U = V_{\delta}(c)$. Then, if $x \in U \cap A$ then |f(x) - L| < L so -L < f(x) - L < L and thus 0 < f(x) as desired.

Problem 4. For (a), we compute for x > 0 that

$$f'(x) = ax^{a-1}\sin(\log(x)) + x^{a-1}\cos(\log(x)) = x^{a-1}(a\sin(\log(x)) + \cos(\log(x)))$$

and f'(x) = 0 if x < 0.

For (b), we claim that f is differentiable if (and only if) a > 1, in which case f'(0) = 0. We prove this for a = 2. We compute

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}.$$

Let $\epsilon > 0$. Let $\delta = \epsilon$. Then if $x \neq 0$ and $|x| < \delta$ then

$$\left|\frac{f(x)}{x}\right| = |x\sin(\log(x))| \le |x| < \epsilon.$$

In fact, for a = 2 the derivative f' is also continuous. We prove that $\lim_{x\to 0} f'(x) = 0$. Let $\epsilon > 0$, and let $\delta = \epsilon/3$. We claim if $|x| < \delta$ then $|f'(x) - f'(0)| = |f'(x)| < \epsilon$. If x < 0 then f'(x) = 0 already; if x > 0 then $|f'(x)| = |x||2\sin(\log(x)) + \cos(\log(x))| \le 3|x| < 3(\epsilon/3) = \epsilon$.

Date: 19 November 2010.