MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM \#2

Problem 1. Statement (a) is true: since A is infinite, there is a sequence (a_{n}) with $a_{n} \in A$ and all a_{n} distinct; this sequence is bounded, so by Bolzano-Weierstrass, it has a convergent subsequence, and its limit is then a limit point of A. Statement (b) is false: what is true is $f^{-1}(U)$ is open whenever U is open. As shown in class, a counterexample is $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x /\left(1+x^{2}\right)$ which has $f(\mathbb{R})=[0,1 / 2]$. Statement (c) is true: every point of S is an isolated point so S has no limit points so S is closed. Statement (d) is false: we need a strict inequality $f(a)<L<f(b)$ in order to ensure that $c \in(a, b)$; a counterexample is $f(x)=x^{2}$ which has $f(-1)=f(1)=1$ but $f(c) \neq 1$ for all $c \in(-1,1)$. Statement (e) is false: for example, $A=[0,1) \cup(1,2]$ is not compact since it is not closed, but $\max A=2$ and $\min A=0$.

Problem 2. For part (a), we treat two cases. First suppose $c=0$. Let $\epsilon>0$. Let $\delta=\epsilon^{2}$. Then, if $|x|<\delta$ then $|\sqrt{x}|<\epsilon$. Now assume $c>0$. Let $\epsilon>0$. Let $\delta=\epsilon \sqrt{c}>0$. Then, if $|x-c|<\delta$ we have

$$
|\sqrt{x}-\sqrt{c}|=\frac{|x-c|}{|\sqrt{x}+\sqrt{c}|}=\frac{|x-c|}{\sqrt{x}+\sqrt{c}} \leq \frac{|x-c|}{\sqrt{c}}<\frac{\sqrt{c} \epsilon}{\sqrt{c}}=\epsilon
$$

For part (b), since f is continuous on $[0,1]$ which is compact, f is uniformly continuous by our theorem. For part (c), we have $f^{\prime}(x)=1 /(2 \sqrt{x})$ defined on $\mathbb{R}_{>0}$. Consider the sequences $\left(x_{n}\right),\left(y_{n}\right)$ where $x_{n}=1 / n^{2}$ and $y_{n}=1 /(n+1)^{2}$. Then $x_{n}, y_{n} \rightarrow 0$ so $\left|x_{n}-y_{n}\right| \rightarrow 0$ but $\left|f^{\prime}\left(x_{n}\right)-f^{\prime}\left(y_{n}\right)\right|=|n / 2-(n+1) / 2|=1 / 2$. So f^{\prime} is not uniformly continuous on $\mathbb{R}_{>0}$ by the sequential criterion.
Problem 3. Let $\epsilon=L>0$. Since $\lim _{x \rightarrow c} f(x)=L$ exists, there exists $\delta>0$ such that $|f(x)-L|<L$ whenever $0<|x-c|<\delta$ and $x \in A$. Let $U=V_{\delta}(c)$. Then, if $x \in U \cap A$ then $|f(x)-L|<L$ so $-L<f(x)-L<L$ and thus $0<f(x)$ as desired.
Problem 4. For (a), we compute for $x>0$ that

$$
f^{\prime}(x)=a x^{a-1} \sin (\log (x))+x^{a-1} \cos (\log (x))=x^{a-1}(a \sin (\log (x))+\cos (\log (x)))
$$

and $f^{\prime}(x)=0$ if $x<0$.
For (b), we claim that f is differentiable if (and only if) $a>1$, in which case $f^{\prime}(0)=0$. We prove this for $a=2$. We compute

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x} .
$$

Let $\epsilon>0$. Let $\delta=\epsilon$. Then if $x \neq 0$ and $|x|<\delta$ then

$$
\left|\frac{f(x)}{x}\right|=|x \sin (\log (x))| \leq|x|<\epsilon
$$

In fact, for $a=2$ the derivative f^{\prime} is also continuous. We prove that $\lim _{x \rightarrow 0} f^{\prime}(x)=0$. Let $\epsilon>0$, and let $\delta=\epsilon / 3$. We claim if $|x|<\delta$ then $\left|f^{\prime}(x)-f^{\prime}(0)\right|=\left|f^{\prime}(x)\right|<\epsilon$. If $x<0$ then $f^{\prime}(x)=0$ already; if $x>0$ then

$$
\left|f^{\prime}(x)\right|=|x||2 \sin (\log (x))+\cos (\log (x))| \leq 3|x|<3(\epsilon / 3)=\epsilon
$$

