MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I

 EXAM \#1\qquad

Problem	Score
1	
2	
3	
4	
5	

Total \qquad

Problem 1 (5 pts). Mark each as true or false. Briefly justify your answer.
(a) Every Cauchy sequence is bounded.
(b) Let $A \subset \mathbb{R}$ be bounded below and let $B=\{b \in \mathbb{R}: b$ is a lower bound for $A\}$. Then B has a maximum.
(c) The set $\{x \in \mathbb{N}: x<17\}$ is countable.
(d) If $\sum x_{n}^{2}$ converges and $x_{n} \geq 0$ for all n, then $\sum x_{n}$ converges.
(e) Given $a, b \in \mathbb{R}$ with $a<b$, the set of irrationals in the interval (a, b) is uncountable.

Problem 2 (5 pts). Prove using the definition that

$$
\lim \frac{\sqrt{n}}{\sqrt{n}+1} \rightarrow 1
$$

Problem 3 (5 pts). Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Suppose that $x \geq 0$ for all $x \in A$. Let

$$
\sqrt{A}=\{\sqrt{x}: x \in A\} .
$$

(a) Show that $\sup A \geq 0$. (Why does $\sup A$ exist?)
(b) Prove that

$$
\sup \sqrt{A}=\sqrt{\sup A} .
$$

Problem 4 (5 pts). Let $\left(b_{n}\right)$ be a convergent sequence with $b_{n} \rightarrow b$. By the Algebraic Limit Theorem, we know that $\left(b_{n}^{2}\right)$ converges to b^{2}.

Prove that $b_{n}^{2} \rightarrow b^{2}$ directly using the definition. [Hint: Use that the sequence is bounded.]

Problem 5 (5 pts). Let $\left(a_{n}\right)$ be a monotone sequence and suppose that $\left(a_{n}\right)$ has a convergent subsequence. Show that $\left(a_{n}\right)$ converges.

