MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM \#1

Problem 1. Statement (a) is true: A Cauchy sequence is convergent, and a convergent sequence is bounded. (One can also show directly that a Cauchy sequence is bounded.) Statement (b) is true: we have max $B=$ $\inf A$. Statement (c) is false: the given set is finite, and a countable set is infinite. Statement (d) is true: the harmonic series $\sum 1 / n$ diverges but the sequence $\sum 1 / n^{2}$ converges. Statement (e) is true: the rationals are countable but the interval (a, b) is uncountable, so there are uncountably many irrationals left.
Problem 2. Let $\epsilon>0$. Let $N \in \mathbb{N}$ satisfy $N>1 / \epsilon^{2}$. Then for $n \geq N$ we have $n \geq N>1 / \epsilon^{2}$ so $1 / \sqrt{n}<\epsilon$ hence

$$
\left|\frac{\sqrt{n}}{\sqrt{n}+1}-1\right|=\left|\frac{\sqrt{n}-(\sqrt{n}+1)}{\sqrt{n}+1}\right|=\frac{1}{\sqrt{n}+1}<\frac{1}{\sqrt{n}}<\epsilon
$$

thus $\lim \sqrt{n} /(\sqrt{n}+1)=1$.
Problem 3. For (a), $\sup A$ exists by the Axiom of Completeness. For any $a \in A$, we have $\sup A$ is an upper bound for A so $\sup A \geq a \geq 0$.

For (b), let $s=\sup A$. We show that $\sqrt{s}=\sup \sqrt{A}$. For any $\sqrt{a} \in \sqrt{A}$ we have $a \in A$ so $a \leq s$, thus $\sqrt{a} \leq \sqrt{s}$, so \sqrt{s} is an upper bound for \sqrt{A}. Next, if b is an upper bound for \sqrt{A}, so that $\sqrt{a} \leq b$ for all $a \in A$, then $a \leq b^{2}$ for all $a \in A$, so b^{2} is an upper bound for A and hence $s=\sup A \leq b^{2}$, so $\sqrt{s} \leq b$. Thus $s=\sup \sqrt{A}$.

Problem 4. Let $\epsilon>0$. Since $\left(b_{n}\right)$ converges, it is bounded; let $M \in \mathbb{R}_{>0}$ be such that $\left|b_{n}\right| \leq M$ for all n. Then by the triangle inequality, we have $\left|b_{n}+b\right| \leq\left|b_{n}\right|+|b| \leq M+|b|$ for all n.

Since $b_{n} \rightarrow b$, there exists $N \in \mathbb{N}$ such $\left|b_{n}-b\right|<\epsilon /(M+|b|)$. Thus, for $n \geq N$ we have

$$
\left|b_{n}^{2}-b^{2}\right|=\left|b_{n}-b\right|\left|b_{n}+b\right|<\frac{\epsilon}{M+|b|}\left|b_{n}+b\right| \leq \epsilon \frac{M+b}{M+b}=\epsilon
$$

so $\lim b_{n}^{2}=b^{2}$.
Problem 5. Without loss of generality, we may assume $\left(a_{n}\right)$ is increasing. Let $\left(a_{n_{k}}\right)$ be a convergent subsequence: it is bounded, say $\left|a_{n_{k}}\right| \leq M$ for all $k \in \mathbb{N}$. Now for any $n \in \mathbb{N}$, since the sequence $n_{1}<n_{2}<\ldots$ of integers is unbounded, there exists $k \in \mathbb{N}$ such that $n \leq n_{k}$; but since the sequence is increasing, we then have $a_{n} \leq a_{n_{k}} \leq M$. Thus $\left(a_{n}\right)$ is bounded, so $\left(a_{n}\right)$ converges by the Monotone Convergence Theorem.

