MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I WORKSHEET, DAY \#29

Theorem. Let $f: K \rightarrow \mathbb{R}$ be continuous on a compact set K. Then $f(K)$ is compact.
We will use the above theorem to prove the Extreme Value Theorem.
Theorem (Extreme Value Theorem). If $f: K \rightarrow \mathbb{R}$ is continuous on a compact set $K \subset \mathbb{R}$, then f attains a maximum and minimum value.

Problem 1.
(a) Let K be compact. Show that K has a maximum and a minimum.
(b) Use the above theorem to show there exists $x_{0}, x_{1} \in K$ such that $f(K) \subset\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]$.

