MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I REVIEW SESSION, EXAM \#2

(1) Show that $f(x)=x /\left(x^{2}+1\right)$ is uniformly continuous on \mathbb{R}.
(2) Let

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
f(x) & = \begin{cases}e^{-1 / x}, & \text { if } x \neq 0 \\
1, & \text { if } x=0\end{cases}
\end{aligned}
$$

Is f differentiable at $x=0$?
(3) Is there a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(\mathbb{R})$ consists of two points?
(4) Let $f: A \rightarrow \mathbb{R}$ be continuous and suppose that $f(x) \geq 0$ for all $x \in A$. Let $g: A \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt{f(x)}$ for $x \in A$. If f is continuous at $c \in A$, show that g is continuous at c.
(5) Let A be a bounded set. Show that \bar{A} is bounded.
(6) Let A be an open set and let $c \in A$. Suppose that $f: A \rightarrow \mathbb{R}$ is differentiable. Suppose further that $\lim _{x \rightarrow c} f^{\prime}(x)$ exists. Show that $f^{\prime}(c)=\lim _{x \rightarrow c} f^{\prime}(x)$.
(7) Let A be a bounded set and let $f: A \rightarrow \mathbb{R}$ be uniformly continuous. Show that f is bounded.
(8) Let $f, g: A \rightarrow \mathbb{R}$ be continuous functions. Define the function $h: A \rightarrow \mathbb{R}$ by $h(x)=\max (f(x), g(x))$. Show that h is continuous.
(9) Let $A, B \subset \mathbb{R}$. Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(10) Let f be differentiable on \mathbb{R}. Suppose that $f(0)=0$ and that $1 \leq f^{\prime}(x) \leq 2$ for all $x \geq 0$. Prove that $x \leq f(x) \leq 2 x$ for all $x \geq 0$.

