MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I IN CLASS FINAL REVIEW

Problem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function with $f([a, b]) \subset[a, b]$. Show that f has a fixed point, i.e., there exists $x \in[a, b]$ such that $f(x)=x$.
Problem 2. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions and define

$$
h(x)= \begin{cases}f(x), & \text { if } x \in \mathbb{Q} \\ g(x), & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Show that h is continuous at c if and only if $f(c)=g(c)$. Assuming that f, g are differentiable, show that h is differentiable at c if and only if $f^{\prime}(c)=g^{\prime}(c)$.
Problem 3. If a_{n} is bounded and $b_{n} \rightarrow 0$ show that $\lim a_{n} / b_{n}$ does not exist.
Problem 4. Let $A, B \subset \mathbb{R}$ be bounded above, and suppose that $\sup A<\sup B$. Show that there exists $b \in B$ such that b is an upper bound for A.
Problem 5. Let $f(x)$ be a polynomial of odd degree. Show that for every $a \in \mathbb{R}$, there exists $c \in \mathbb{R}$ such that $f(c)=a$.

Problem 6. Prove that every sequence in \mathbb{R} has a monotone subsequence.
Problem 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and suppose that $A \subset \mathbb{R}$ is compact. Is $f^{-1}(A)$ necessarily compact?

Problem 8. Use the mean value theorem to show that if f, f^{\prime} are both strictly increasing functions then f is unbounded.

Problem 9. Prove using the definition of compact (that every sequence in K has a subsequence which converges in K) to show that every compact set has a maximum.
Problem 10. Show that the function $f(x)=\sqrt{|x|}$ is uniformly continuous on \mathbb{R}.
Problem 11. Consider the sequence of functions $f_{n}(x)=1+\frac{\sin (n x)}{n}$. Show that f_{n} converge uniformly to a function f and state f.
Problem 12. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of continuous functions which converge uniformly to $f:[0,1] \rightarrow \mathbb{R}$. Prove that f is uniformly continuous.

Problem 13. Is the set of all finite subsets of \mathbb{N} countable or uncountable?
Problem 14. True or false: Let A_{1}, A_{2}, \ldots be compact subset of \mathbb{R} such that $A=\bigcup_{n=1}^{\infty} A_{n}$ is compact. Then $A=\bigcup_{n=1}^{N} A_{n}$ for some $N \in \mathbb{N}$.
Problem 15. Prove that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
Problem 16. Let $f, g: A \rightarrow \mathbb{R}$ be uniformly continuous functions. Prove that $f-g$ is uniformly continuous on A, where $f-g: A \rightarrow \mathbb{R}$ is defined by $(f-g)(x)=f(x)-g(x)$.

Date: 9 December 2009; exam Tuesday, 15 December 2009, 3:30-6:30 p.m.

Problem 17. Is $f(x)=x|x|$ differentiable at $x=0$?
Problem 18. Let F_{n} be the nth Fibonnaci number, where $F_{0}=F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$. Show that the limit

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}
$$

exists and compute the value of this limit.
Problem 19. Let $a_{n} \geq 0$ and suppose that $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that $\sum_{n=1}^{\infty} a_{n} / n$ converges.

Problem 20. Let

$$
h(x)=\sum_{n=1}^{\infty} \frac{1}{x^{2}+n^{2}} .
$$

Show that h is continuous on \mathbb{R}. Is h differentiable? If so, is the derivative function h^{\prime} continuous?

Problem 21. Let $f: A \rightarrow \mathbb{R}$ be a function. Suppose that there exists λ with $0<\lambda<1$ such that

$$
|f(x)-f(y)| \leq \lambda|x-y|
$$

for all $x, y \in A$. Show that f is uniformly continuous on A.
Problem 22. Prove that there exists $c \in(0, \pi)$ such that the line tangent to the graph of $f(x)=\sin x+x^{3}-\pi^{2} x$ at $(c, f(c))$ has slope zero.

