MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I HOMEWORK \#8

Problems (FOR ALL)
4.2.1(a)(c)
4.2.A: Let $t: \mathbb{R} \rightarrow \mathbb{R}$ denote the Thomae function. Show that $\lim _{x \rightarrow 1} t(x)=0$. [Hint: See Exercise 4.2.4.]
4.2.6
4.2.9
4.3.2
4.3.4
4.3.7
4.3.12

Problems (FOR GRad students)

4.3.A: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(x)=k x$ for some $k \in \mathbb{R}$. Conclude that the only continuous group automorphism f of \mathbb{R} with $f(1)=1$ (hence the only continuous ring automorphism of \mathbb{R}) is the identity. [Hint: See Exercise 4.3.10.]
4.3.B: Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function, i.e. $f(x) \leq f(y)$ whenever $x \leq y$.
(a) Let $c \in[a, b]$. Show that $\lim _{x \rightarrow c^{-}} f(x)$ exists, i.e. for all sequences $\left(x_{n}\right)$ with $x_{n} \rightarrow x$ and $x_{n}<x$ for all n, the limit $\lim f\left(x_{n}\right)$ exists and this limit is independent of the choice of sequence $\left(x_{n}\right)$. Conclude similarly that $\lim _{x \rightarrow c^{+}} f(x)$ exists.
(b) Define the $j u m p$ function $j:[a, b] \rightarrow \mathbb{R}$ defined by $j(c)=\lim _{x \rightarrow c^{+}} f(x)-\lim _{x \rightarrow c^{-}} f(x)$. Show that $j(c) \geq 0$ for all $c \in[a, b]$. For any $\epsilon>0$, show that there are at most finitely many points $c \in[a, b]$ such that $j(c) \geq \epsilon$.
(c) Conclude that if f is a monotone function on $[a, b]$ then f has at most countably many discontinuities, i.e. the set $\{c \in[a, b]: f$ is not continuous at $c\}$ is finite or countable.

