MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I FINAL EXAM

Name

\qquad

Problem 1. Mark each as true or false. Briefly justify your answer.
(a) If $x_{n} \rightarrow x$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded function then $f\left(x_{n}\right)$ converges.
(b) There exists a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)= \begin{cases}1, & \text { if } x \geq 0 \\ -1, & \text { if } x<0\end{cases}
$$

(c) If $A \subset \mathbb{R}$ is open and $A \supset \mathbb{Q}$, then $A=\mathbb{R}$.
(d) If $K \subset \mathbb{R}$ is compact, then K is connected.
(e) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and bounded then f attains a minimum and maximum value.

Problem 2. Show using the definition that the sequence $\left(a_{n}\right)$ with $a_{n}=\frac{n}{2 n+1}$ converges.

Problem 3. Let $A, B \subset(0, \infty)$ be subsets which are bounded above. Let

$$
A B=\{a b: a \in A, b \in B\} .
$$

Show that

$$
\sup A B=(\sup A)(\sup B)
$$

Problem 4. Define a sequence $\left(a_{n}\right)$ by $a_{1}=2$ and $a_{n+1}=\frac{a_{n}}{2}+\frac{5}{a_{n}}$. Prove that the sequence converges and find its limit.

Problem 5. Mark each as true or false. Briefly justify your answer.
(a) There exists a subset of \mathbb{R} with exactly four limit points.
(b) Every subset of \mathbb{R} is either countable or uncountable.
(c) If $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are uniformly convergent, then $\left(f_{n} g_{n}\right)$ is uniformly convergent.
(d) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is compact, then $f^{-1}(A)$ is closed.
(e) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is compact, then $f(A)$ is closed.

Problem 6. Suppose that $\sum_{n=1}^{\infty} a_{n}$ converges with $a_{n} \geq 0$. Prove that for all $\epsilon>0$, there exists a subsequence $\left(b_{n}\right)$ of $\left(a_{n}\right)$ such that $\sum_{n=1}^{\infty} b_{n}<\epsilon$.

Problem 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1+x, & \text { if } x \geq 0 \\ \frac{1}{1-x}, & \text { if } x<0\end{cases}
$$

(a) Prove that f is differentiable.
(b) Is f^{\prime} continuous? (A brief justification will suffice.)

Problem 8. Show that the sequence of functions

$$
f_{n}(x)=\frac{x^{n}}{1+x^{n}}
$$

converges pointwise on $[0,1]$. Does it converge uniformly on $[0,1]$?

Problem 9. Show that if $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges (absolutely).

Problem 10. Let $f:[-1,2] \rightarrow \mathbb{R}$ be a continuous function. Suppose that $f(-1)=0$ and $f(2)=5$. Show that $f(x)=x^{2}$ for some $x \in(-1,2)$.

Problem 11. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b), and suppose that $f^{\prime}(x)$ is bounded on (a, b). Use the mean value theorem to prove that f is uniformly continuous.

Problem 12. Let $f:[a, b] \rightarrow \mathbb{R}$ be one-to-one and continuous, and suppose that $f(a)<f(b)$. Show that $f([a, b])=[f(a), f(b)]$.

