
MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I
FINAL EXAM

Problem 1. Part (a) is false: take f(x) = cos(1/x) and xn = 1/(πn), so that xn → 0 but f(xn) =
(−1)n. Part (b) is false by Darboux’s theorem: a differentiable function has a derivative which satisfies the
intermediate value property. Statement (c) is false: Take A = R\{

√
2}, which is open since the complement

{
√

2} is closed, and A ⊃ Q since
√

2 is irrational. Statement (d) is false: take [0, 1] ∪ [2, 3]. Statement (e)
is also false: the function f(x) = x2/(1 + x2) is continuous and bounded but has no maximum value (it
approaches but never achieves 1 as x →∞).

Problem 2. We claim n/(2n + 1) → 1/2. Let ε > 0. Let N > 1/(4ε). Then for n ≥ N we have∣∣∣∣ n

2n + 1
− 1

2

∣∣∣∣ =
1

2(2n + 1)
<

1
4n

≤ 1
4N

< ε

as claimed.

Problem 3. Let s = supA and t = sup B. Then st is an upper bound for AB, since if ab ∈ AB then a ∈ A
and b ∈ B so a ≤ s and b ≤ t so ab ≤ st. By the axiom of completeness, AB has a least upper bound, say
u = supAB. Then u ≤ st by the above. Since u is an upper bound, we have for all a ∈ A and b ∈ B that
ab ≤ u. But then a ≤ u/b for all a ∈ A (and any b ∈ B) so s ≤ u/b since s = sup A, and hence b ≤ u/s. But
then t ≤ u/s, so st ≤ u. Thus u = st.

Problem 4. If the sequence was convergent with an → a > 0, then

a = lim(an) = lim(an+1) = lim
(

an

2
+

5
an

)
=

a

2
+

5
a

by the algebraic limit theorem, so a2 = 10. Since an > 0, by the order limit theorem, we must have a =
√

10.
To show that the sequence converges we apply the monotone convergence theorem: we show it is (even-

tually) decreasing and bounded below. We claim that an >
√

10 for n ≥ 2: we have

an+1 =
an

2
+

5
an

=
a2

n + 10
2an

>
√

10

if and only if (an −
√

10)2 > 0, which is true. To show it is decreasing we note that an+1 =
an

2
+

5
an

≤ an

if and only if a2
n ≥ 10, which holds by the previous statement.

Problem 5. Statement (a) is true: the set {x + 1/n : x = 0, 1, 2, 3 and n ∈ N} has the limit points
0, 1, 2, 3. Statement (b) is false: finite sets are neither countable nor uncountable. Statement (c) is false:
take fn(x) = gn(x) = x on R: then trivially each is uniformly convergent, but we showed in class that x2

is not. Statement (d) is true: if A is compact then A is closed, and since f is continuous f−1(A) is closed.
Statement (e) is also true: since A is compact and f is continuous then f(A) is compact, hence closed.

Problem 6. Let
∑∞

n=1 an = A. Then by the Cauchy criterion there exists N ∈ N such that for all
n > m ≥ N we have |an + an−1 + · · ·+ am+1| = an + · · ·+ am+1 < ε/2. Let m = N . Then by the order limit
theorem (on the partial sums) we obtain

aN+1 + aN+2 + · · · =
∞∑

k=N+1

ak ≤
ε

2
< ε.

Let bn = aN+n, so e.g. b1 = aN+1. Then
∞∑

n=1

bn =
∞∑

n=1

an+N =
∞∑

k=N+1

ak < ε, as desired.
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2 241 FINAL EXAM

Problem 7. First, part (a). By calculus, f is differentiable for all x 6= 0. We claim that f ′(0) = 1, which is
to say we prove that

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

f(x)− 1
x

= 1.

Let ε > 0 and let δ = ε. Let |x| < δ. If x > 0 then
∣∣∣∣f(x)− 1

x
− 1

∣∣∣∣ = 0 identically. If x < 0 we have∣∣∣∣f(x)− 1
x

− 1
∣∣∣∣ =

∣∣∣∣ 1
1− x

− 1
∣∣∣∣ =

∣∣∣∣ x

1− x

∣∣∣∣ < |x| < δ = ε.

Therefore indeed f ′(0) = 1. For part (b), we have that

f ′(x) =

1, if x ≥ 0;
1

(1− x)2
, if x < 0.

So indeed f ′(x) is continuous, since limx→0 1/(1−x)2 = 1. (Note that f ′ itself is not differentiable, though.)

Problem 8. For any x ∈ [0, 1), we proved in class that xn → 0, so fn(x) → 0 by the algebraic limit theorem.
For x = 1 we have fn(1) = 1/2 identically, so fn(x) converges pointwise to

f(x) =

{
0, if 0 ≤ x < 1;
1/2, if x = 1.

The convergence is not uniform: if it were, then since each fn(x) is continuous so too would be f(x).

Problem 9. Since
∑∞

n=1 an is convergent, we have |an| → 0. Therefore, there exists N ∈ N such that
|an| < 1 for n ≥ N . Thus a2

n < |an| for n ≥ N . Therefore
∞∑

n=1

a2
n =

N∑
n=1

a2
n +

∞∑
n=N+1

a2
n <

N∑
n=1

a2
n +

∞∑
n=N+1

|an|.

The latter sum converges since
∑∞

n=1 an is absolutely convergent, and therefore by the comparison test the
series

∑∞
n=1 a2

n converges.

Problem 10. Consider g(x) = f(x) − x2. Then g : [−1, 2] → R is a continuous function and g(−1) =
f(−1) − (−1)2 = −1 and g(2) = f(2) − 22 = 5 − 4 = 1. By the intermediate value theorem, there exists
x ∈ (−1, 2) such that g(x) = f(x)− x2 = 0, so f(x) = x2.

Problem 11. Suppose that |f ′(c)| ≤ M for all c ∈ (a, b). Now let ε > 0, and let δ = ε/M . Let
x, y ∈ [a, b] with x < y and |x − y| < δ. Then by the mean value theorem, there exists c ∈ (x, y) such that
f(x)− f(y)

x− y
= f ′(c). So

∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣ = |f ′(c)| ≤ M so |f(x)− f(y)| ≤ M |x− y| < Mδ = M(ε/M) = ε.

Problem 12. By the extreme value theorem, f achieves its minimum and maximum. We claim that the
minimum is achieved at x = a and the maximum at x = b. We prove the latter, the former follows by instead
considering −f . Suppose the maximum L is achieved at c ∈ [a, b]. Since f(a) < f(b), we have c ∈ (a, b].
Note that L ≥ f(b). If c = b then we are done, so suppose that c ∈ (a, b). Then by the intermediate value
theorem, f restricted to the interval [a, c] achieves all values between f(a) and L ≥ f(b), so in particular
there exists d ∈ [a, c] such that f(d) = L = f(b). But this contradicts the fact that f is one-to-one.


