MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES 1
FINAL EXAM

Problem 1. Part (a) is false: take f(z) = cos(l/x) and =, = 1/(wn), so that x, — 0 but f(z,) =
(=1)™. Part (b) is false by Darboux’s theorem: a differentiable function has a derivative which satisfies the
intermediate value property. Statement (c) is false: Take A = R\ {v/2}, which is open since the complement
{V/2} is closed, and A D Q since /2 is irrational. Statement (d) is false: take [0,1] U [2,3]. Statement (e)
is also false: the function f(z) = 22/(1 + x2) is continuous and bounded but has no maximum value (it
approaches but never achieves 1 as x — 00).

Problem 2. We claim n/(2n+ 1) — 1/2. Let € > 0. Let N > 1/(4e¢). Then for n > N we have
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as claimed.

Problem 3. Let s = sup A and ¢t = sup B. Then st is an upper bound for AB, since if ab € AB then a € A
and b € Bsoa<sandb<tsoab < st. By the axiom of completeness, AB has a least upper bound, say
u = sup AB. Then u < st by the above. Since u is an upper bound, we have for all a € A and b € B that
ab < u. But then a < wu/b for all a € A (and any b € B) so s < u/b since s = sup A, and hence b < u/s. But
then t <u/s, so st <wu. Thus u = st.

Problem 4. If the sequence was convergent with a, — a > 0, then

. . . an, 5 a 5

=1 =1 =1 T R
a = lim(a,) = lim(a,+1) = lim < 5 + an) 5 + .
by the algebraic limit theorem, so a® = 10. Since a,, > 0, by the order limit theorem, we must have a = v/10.
To show that the sequence converges we apply the monotone convergence theorem: we show it is (even-

tually) decreasing and bounded below. We claim that a,, > v/10 for n > 2: we have
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if and only if (a, — \/10)2 > 0, which is true. To show it is decreasing we note that a,; = 7" + —<a,
an

if and only if a2 > 10, which holds by the previous statement.

Problem 5. Statement (a) is true: the set {x +1/n : © = 0,1,2,3 and n € N} has the limit points
0,1,2,3. Statement (b) is false: finite sets are neither countable nor uncountable. Statement (c) is false:
take fn(x) = gn(z) = 2 on R: then trivially each is uniformly convergent, but we showed in class that x?
is not. Statement (d) is true: if A is compact then A is closed, and since f is continuous f~1(A) is closed.
Statement (e) is also true: since A is compact and f is continuous then f(A) is compact, hence closed.

Problem 6. Let Y a, = A. Then by the Cauchy criterion there exists N € N such that for all
n>m > N we have |a, +an_1 4+ +amy1| = an+- -+ amy1 < €/2. Let m = N. Then by the order limit
theorem (on the partial sums) we obtain
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Let b, = an4n, so e.g. by = any1. Then Z b, = Z Gn+N = Z ay < €, as desired.
n=1

n=1 k=N+1
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Problem 7. First, part (a). By calculus, f is differentiable for all « # 0. We claim that f’(0) = 1, which is
to say we prove that
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Let € > 0 and let 6 = €. Let |z| < 4. Ifac>0thenf(x)—1‘—Oidentica11y. If x < 0 we have
x
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Therefore indeed f'(0) = 1. For part (b), we have that
1, ifx > 0;
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So indeed f’(z) is continuous, since lim,_o1/(1 —z)? = 1. (Note that f’ itself is not differentiable, though.)

Problem 8. For any z € [0, 1), we proved in class that 2™ — 0, so f,,(z) — 0 by the algebraic limit theorem.
For x =1 we have f,(1) = 1/2 identically, so f,(x) converges pointwise to

0, ifo<z<1;
xTr) =
/(@) {1/2, itz =1.
The convergence is not uniform: if it were, then since each f, () is continuous so too would be f(z).

Problem 9. Since >~ a, is convergent, we have |a,| — 0. Therefore, there exists N € N such that
lan| < 1 for n > N. Thus a2 < |a,| for n > N. Therefore
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E a;, = E a, + E a;, < E a, + E |an].
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The latter sum converges since 220:1 a, is absolutely convergent, and therefore by the comparison test the

. oo
series > 7 | a? converges.

Problem 10. Consider g(x) = f(x) — 2%. Then g : [-1,2] — R is a continuous function and g(—1) =
f(=1) = (=1)2 = —1 and g(2) = f(2) — 2% = 5 —4 = 1. By the intermediate value theorem, there exists
x € (—1,2) such that g(z) = f(x) — 22 =0, so f(x) = 22

Problem 11. Suppose that |f'(c)] < M for all ¢ € (a,b). Now let ¢ > 0, and let 6 = ¢/M. Let
x,y € [a,b] with z < y and |z — y| < §. Then by the mean value theorem, there exists ¢ € (z,y) such that
fx) — fly flx) — fly

(iy() = J'(e). So w = [f'(e)l < M so | f(x) ~ f(y)| < Ml —y| < M§ = M(e/M) =
Problem 12. By the extreme value theorem, f achieves its minimum and maximum. We claim that the
minimum is achieved at = a and the maximum at x = b. We prove the latter, the former follows by instead
considering —f. Suppose the maximum L is achieved at ¢ € [a,b]. Since f(a) < f(b), we have ¢ € (a,b].
Note that L > f(b). If ¢ = b then we are done, so suppose that ¢ € (a,b). Then by the intermediate value
theorem, f restricted to the interval [a,c] achieves all values between f(a) and L > f(b), so in particular
there exists d € [a, ¢] such that f(d) = L = f(b). But this contradicts the fact that f is one-to-one.




