MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I FINAL EXAM

Problem 1. Part (a) is false: take $f(x)=\cos (1 / x)$ and $x_{n}=1 /(\pi n)$, so that $x_{n} \rightarrow 0$ but $f\left(x_{n}\right)=$ $(-1)^{n}$. Part (b) is false by Darboux's theorem: a differentiable function has a derivative which satisfies the intermediate value property. Statement (c) is false: Take $A=\mathbb{R} \backslash\{\sqrt{2}\}$, which is open since the complement $\{\sqrt{2}\}$ is closed, and $A \supset \mathbb{Q}$ since $\sqrt{2}$ is irrational. Statement (d) is false: take [0, 1] $\cup[2,3]$. Statement (e) is also false: the function $f(x)=x^{2} /\left(1+x^{2}\right)$ is continuous and bounded but has no maximum value (it approaches but never achieves 1 as $x \rightarrow \infty)$.
Problem 2. We claim $n /(2 n+1) \rightarrow 1 / 2$. Let $\epsilon>0$. Let $N>1 /(4 \epsilon)$. Then for $n \geq N$ we have

$$
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|=\frac{1}{2(2 n+1)}<\frac{1}{4 n} \leq \frac{1}{4 N}<\epsilon
$$

as claimed.
Problem 3. Let $s=\sup A$ and $t=\sup B$. Then $s t$ is an upper bound for $A B$, since if $a b \in A B$ then $a \in A$ and $b \in B$ so $a \leq s$ and $b \leq t$ so $a b \leq s t$. By the axiom of completeness, $A B$ has a least upper bound, say $u=\sup A B$. Then $u \leq s t$ by the above. Since u is an upper bound, we have for all $a \in A$ and $b \in B$ that $a b \leq u$. But then $a \leq u / b$ for all $a \in A$ (and any $b \in B$) so $s \leq u / b$ since $s=\sup A$, and hence $b \leq u / s$. But then $t \leq u / s$, so $s t \leq u$. Thus $u=s t$.

Problem 4. If the sequence was convergent with $a_{n} \rightarrow a>0$, then

$$
a=\lim \left(a_{n}\right)=\lim \left(a_{n+1}\right)=\lim \left(\frac{a_{n}}{2}+\frac{5}{a_{n}}\right)=\frac{a}{2}+\frac{5}{a}
$$

by the algebraic limit theorem, so $a^{2}=10$. Since $a_{n}>0$, by the order limit theorem, we must have $a=\sqrt{10}$.
To show that the sequence converges we apply the monotone convergence theorem: we show it is (eventually) decreasing and bounded below. We claim that $a_{n}>\sqrt{10}$ for $n \geq 2$: we have

$$
a_{n+1}=\frac{a_{n}}{2}+\frac{5}{a_{n}}=\frac{a_{n}^{2}+10}{2 a_{n}}>\sqrt{10}
$$

if and only if $\left(a_{n}-\sqrt{10}\right)^{2}>0$, which is true. To show it is decreasing we note that $a_{n+1}=\frac{a_{n}}{2}+\frac{5}{a_{n}} \leq a_{n}$ if and only if $a_{n}^{2} \geq 10$, which holds by the previous statement.
Problem 5. Statement (a) is true: the set $\{x+1 / n: x=0,1,2,3$ and $n \in \mathbb{N}\}$ has the limit points $0,1,2,3$. Statement (b) is false: finite sets are neither countable nor uncountable. Statement (c) is false: take $f_{n}(x)=g_{n}(x)=x$ on \mathbb{R} : then trivially each is uniformly convergent, but we showed in class that x^{2} is not. Statement (d) is true: if A is compact then A is closed, and since f is continuous $f^{-1}(A)$ is closed. Statement (e) is also true: since A is compact and f is continuous then $f(A)$ is compact, hence closed.
Problem 6. Let $\sum_{n=1}^{\infty} a_{n}=A$. Then by the Cauchy criterion there exists $N \in \mathrm{~N}$ such that for all $n>m \geq N$ we have $\left|a_{n}+a_{n-1}+\cdots+a_{m+1}\right|=a_{n}+\cdots+a_{m+1}<\epsilon / 2$. Let $m=N$. Then by the order limit theorem (on the partial sums) we obtain

$$
a_{N+1}+a_{N+2}+\cdots=\sum_{k=N+1}^{\infty} a_{k} \leq \frac{\epsilon}{2}<\epsilon
$$

Let $b_{n}=a_{N+n}$, so e.g. $b_{1}=a_{N+1}$. Then $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} a_{n+N}=\sum_{k=N+1}^{\infty} a_{k}<\epsilon$, as desired.

Problem 7. First, part (a). By calculus, f is differentiable for all $x \neq 0$. We claim that $f^{\prime}(0)=1$, which is to say we prove that

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)-1}{x}=1 .
$$

Let $\epsilon>0$ and let $\delta=\epsilon$. Let $|x|<\delta$. If $x>0$ then $\left|\frac{f(x)-1}{x}-1\right|=0$ identically. If $x<0$ we have

$$
\left|\frac{f(x)-1}{x}-1\right|=\left|\frac{1}{1-x}-1\right|=\left|\frac{x}{1-x}\right|<|x|<\delta=\epsilon
$$

Therefore indeed $f^{\prime}(0)=1$. For part (b), we have that

$$
f^{\prime}(x)= \begin{cases}1, & \text { if } x \geq 0 \\ \frac{1}{(1-x)^{2}}, & \text { if } x<0\end{cases}
$$

So indeed $f^{\prime}(x)$ is continuous, since $\lim _{x \rightarrow 0} 1 /(1-x)^{2}=1$. (Note that f^{\prime} itself is not differentiable, though.)
Problem 8. For any $x \in[0,1)$, we proved in class that $x^{n} \rightarrow 0$, so $f_{n}(x) \rightarrow 0$ by the algebraic limit theorem. For $x=1$ we have $f_{n}(1)=1 / 2$ identically, so $f_{n}(x)$ converges pointwise to

$$
f(x)= \begin{cases}0, & \text { if } 0 \leq x<1 \\ 1 / 2, & \text { if } x=1\end{cases}
$$

The convergence is not uniform: if it were, then since each $f_{n}(x)$ is continuous so too would be $f(x)$.
Problem 9. Since $\sum_{n=1}^{\infty} a_{n}$ is convergent, we have $\left|a_{n}\right| \rightarrow 0$. Therefore, there exists $N \in \mathrm{~N}$ such that $\left|a_{n}\right|<1$ for $n \geq N$. Thus $a_{n}^{2}<\left|a_{n}\right|$ for $n \geq N$. Therefore

$$
\sum_{n=1}^{\infty} a_{n}^{2}=\sum_{n=1}^{N} a_{n}^{2}+\sum_{n=N+1}^{\infty} a_{n}^{2}<\sum_{n=1}^{N} a_{n}^{2}+\sum_{n=N+1}^{\infty}\left|a_{n}\right| .
$$

The latter sum converges since $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, and therefore by the comparison test the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.

Problem 10. Consider $g(x)=f(x)-x^{2}$. Then $g:[-1,2] \rightarrow \mathbb{R}$ is a continuous function and $g(-1)=$ $f(-1)-(-1)^{2}=-1$ and $g(2)=f(2)-2^{2}=5-4=1$. By the intermediate value theorem, there exists $x \in(-1,2)$ such that $g(x)=f(x)-x^{2}=0$, so $f(x)=x^{2}$.
Problem 11. Suppose that $\left|f^{\prime}(c)\right| \leq M$ for all $c \in(a, b)$. Now let $\epsilon>0$, and let $\delta=\epsilon / M$. Let $x, y \in[a, b]$ with $x<y$ and $|x-y|<\delta$. Then by the mean value theorem, there exists $c \in(x, y)$ such that $\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)$. So $\left|\frac{f(x)-f(y)}{x-y}\right|=\left|f^{\prime}(c)\right| \leq M$ so $|f(x)-f(y)| \leq M|x-y|<M \delta=M(\epsilon / M)=\epsilon$.
Problem 12. By the extreme value theorem, f achieves its minimum and maximum. We claim that the minimum is achieved at $x=a$ and the maximum at $x=b$. We prove the latter, the former follows by instead considering $-f$. Suppose the maximum L is achieved at $c \in[a, b]$. Since $f(a)<f(b)$, we have $c \in(a, b]$. Note that $L \geq f(b)$. If $c=b$ then we are done, so suppose that $c \in(a, b)$. Then by the intermediate value theorem, f restricted to the interval $[a, c]$ achieves all values between $f(a)$ and $L \geq f(b)$, so in particular there exists $d \in[a, c]$ such that $f(d)=L=f(b)$. But this contradicts the fact that f is one-to-one.

