MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM #2

Name _____

Problem 1. Mark each as true or false. Briefly justify your answer. (a) If $A \subset \mathbb{R}$ is countable then A is not open.

(b) The intersection of two perfect sets is perfect.

(c) If $f: A \to \mathbb{R}$ is continuous and A is closed then f is uniformly continuous.

(d) Let $f : [a, b] \to \mathbb{R}$ be continuous. Then $f([a, b]) \subset [f(a), f(b)]$.

(e) If $f : [a, b] \to \mathbb{R}$ is differentiable on (a, b) and f(a) = f(b) then there exists $c \in (a, b)$ such that f'(c) = 0.

Date: Friday, 20 November 2009.

Problem 2. Let A be a closed set, let $f : A \to \mathbb{R}$ be a continuous function, and let $S = \{x \in A : f(x) \ge 5\}$. Show that S is closed.

Problem 3. Let

$$f : \mathbb{R} \to \mathbb{R}$$
$$f(x) = \begin{cases} x^2, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

(a) Show that f is differentiable at x = 0 (using the definition).

(b) Is f' continuous on \mathbb{R} ? Is f' differentiable on \mathbb{R} ?

Problem 4. Let $f: A \to \mathbb{R}$ be a function. Suppose there exists $\lambda > 0$ such that $|f(x) - f(y)| \le \lambda |x - y|^2$

for all $x, y \in A$. Show that f is uniformly continuous on A.

Problem 5.

(a) Let K_1, \ldots, K_n be compact. Show that $K_1 \cup K_2 \cup \cdots \cup K_n$ is compact.

(b) Find an infinite collection K_1, K_2, \ldots of compact sets such that $\bigcup_{n=1}^{\infty} K_n$ is not compact.