MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM \#2

Name

\qquad

Problem 1. Mark each as true or false. Briefly justify your answer.
(a) If $A \subset \mathbb{R}$ is countable then A is not open.
(b) The intersection of two perfect sets is perfect.
(c) If $f: A \rightarrow \mathbb{R}$ is continuous and A is closed then f is uniformly continuous.
(d) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then $f([a, b]) \subset[f(a), f(b)]$.
(e) If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable on (a, b) and $f(a)=f(b)$ then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Problem 2. Let A be a closed set, let $f: A \rightarrow \mathbb{R}$ be a continuous function, and let $S=\{x \in A: f(x) \geq 5\}$. Show that S is closed.

Problem 3. Let

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
f(x) & = \begin{cases}x^{2}, & \text { if } x \geq 0 \\
0, & \text { if } x<0\end{cases}
\end{aligned}
$$

(a) Show that f is differentiable at $x=0$ (using the definition).
(b) Is f^{\prime} continuous on \mathbb{R} ? Is f^{\prime} differentiable on \mathbb{R} ?

Problem 4. Let $f: A \rightarrow \mathbb{R}$ be a function. Suppose there exists $\lambda>0$ such that

$$
|f(x)-f(y)| \leq \lambda|x-y|^{2}
$$

for all $x, y \in A$. Show that f is uniformly continuous on A.

Problem 5.

(a) Let K_{1}, \ldots, K_{n} be compact. Show that $K_{1} \cup K_{2} \cup \cdots \cup K_{n}$ is compact.
(b) Find an infinite collection K_{1}, K_{2}, \ldots of compact sets such that $\bigcup_{n=1}^{\infty} K_{n}$ is not compact.

