MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM #1

Name _____

Problem 1. Mark each as true or false. Briefly justify your answer. (a) If (a_n) has a convergent subsequence, then (a_n) is convergent.

(b) If (a_n) is convergent and (a_nb_n) is convergent then (b_n) is convergent.

- (c) If (x_n) is a Cauchy sequence, then there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have $|x_{n+1} x_{m+1}| \leq |x_n x_m|$.
- (d) The set of all functions $f : \mathbb{N} \to \{0, 1\}$ is uncountable.
- (e) Every nonempty bounded subset of \mathbb{R} has a maximum.

Date: 7 October 2009.

Problem 2. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be nonempty subsets of the real numbers. Define $A + B = \{a + b : a \in A, b \in B\}.$

Prove that if A and B are bounded above, then

 $\sup(A+B) = \sup(A) + \sup(B).$

Problem 3. Prove using the definition that

$$\lim \frac{\sqrt{n}}{n+1} \to 0.$$

Problem 4. Let (x_n) be a sequence and suppose that $x_n \to x$ and $x_n \to y$. Show that x = y.

Problem 5. Suppose $a_n \ge 0$ and $a_n \to 0$. Given any $\epsilon > 0$, show that there is a subsequence (b_n) of (a_n) such that $\sum_{n=1}^{\infty} b_n < \epsilon$.