# MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM \#1 

Name $\qquad$

Problem 1. Mark each as true or false. Briefly justify your answer.
(a) If $\left(a_{n}\right)$ has a convergent subsequence, then $\left(a_{n}\right)$ is convergent.
(b) If $\left(a_{n}\right)$ is convergent and $\left(a_{n} b_{n}\right)$ is convergent then $\left(b_{n}\right)$ is convergent.
(c) If $\left(x_{n}\right)$ is a Cauchy sequence, then there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have $\left|x_{n+1}-x_{m+1}\right| \leq\left|x_{n}-x_{m}\right|$.
(d) The set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$ is uncountable.
(e) Every nonempty bounded subset of $\mathbb{R}$ has a maximum.

Problem 2. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be nonempty subsets of the real numbers. Define

$$
A+B=\{a+b: a \in A, b \in B\}
$$

Prove that if $A$ and $B$ are bounded above, then

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

Problem 3. Prove using the definition that

$$
\lim \frac{\sqrt{n}}{n+1} \rightarrow 0
$$

Problem 4. Let $\left(x_{n}\right)$ be a sequence and suppose that $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$. Show that $x=y$.

Problem 5. Suppose $a_{n} \geq 0$ and $a_{n} \rightarrow 0$. Given any $\epsilon>0$, show that there is a subsequence $\left(b_{n}\right)$ of $\left(a_{n}\right)$ such that $\sum_{n=1}^{\infty} b_{n}<\epsilon$.

