MATH 241: ANALYSIS IN SEVERAL REAL VARIABLES I EXAM \#1

Problem 1. Statement (a) is false: take the sequence $(0,1,0,2,0,3,0,4, \ldots)$, which has the convergent subsequence $(0,0,0,0, \ldots)$. Statement (b) is also false: take $a_{n}=1 / n$ and $b_{n}=n$; then (a_{n}) converges (to 0), (b_{n}) diverges, but $a_{n} b_{n}=1$ so ($a_{n} b_{n}$) converges. Statement (c) is false: we are given only that $\left|x_{n}-x_{m}\right|<\epsilon$ in the definition of a Cauchy sequence. Statement (d) is true: there is a bijection between the set of functions $f: \mathbb{N} \rightarrow\{0,1\}$ and the set of sequences with entries $(0,1)$, which is uncountable by Cantor's diagonalization argument. Statement (e) is false: every nonempty bounded subset has a supremum, but not a maximum, e.g. $(0,1)$.
Problem 2. Let x, y be upper bounds for A, B. Since A, B are bounded above, by the Axiom of Completeness they have least upper bounds, say $s=\sup (A)$ and $t=\sup (B)$. We claim that $\sup (A+B)=s+t$.

Since $a \leq s$ for all $a \in A$ and $b \leq t$ for all $b \in B$, we have $a+b \leq s+t$ for all $a+b \in A+B$, so $s+t$ is an upper bound for $A+B$. Now let $u \in \mathbb{R}$ be an upper bound for $A+B$. Then $a+b \leq u$ for all $a \in A$ and $b \in B$. Thus, for all $b \in B$ we have $a \leq u-b$ for all $a \in A$; but since $s=\sup (A)$, we must have $s \leq u-b$. Thus $s+b \leq u$ for all $b \in B$. But then $b \leq u-s$ for all $b \in B$, so $t \leq u-s$, so $s+t \leq u$. Thus $s+t$ is the least upper bound for $A+B$.
Problem 3. Let $\epsilon>0$. Let $N \in \mathbb{N}$ satisfy $N>1 / \epsilon^{2}$. Then for $n \geq N$ we have $n \geq N>1 / \epsilon^{2}$ so

$$
\frac{\sqrt{n}}{n+1}<\frac{\sqrt{n}}{n}=1 / \sqrt{n}<\epsilon
$$

hence $\frac{\sqrt{n}}{n+1} \rightarrow 0$.
Problem 4. Suppose that $x \neq y$. Let $\epsilon=|y-x| / 2>0$. Then since $x_{n} \rightarrow x$, there exists $N_{1} \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\epsilon$. Similarly, there exists $N_{2} \in \mathbb{N}$ such that $\left|x_{n}-y\right|<\epsilon$. Let $N=\max \left(N_{1}, N_{2}\right)$. Then for all $n \geq N$, we have

$$
|y-x|=\left|y-x_{n}+x_{n}-x\right| \leq\left|x_{n}-y\right|+\left|x_{n}-x\right|<2 \epsilon=|y-x|
$$

which is a contradiction. Thus $x=y$.
Problem 5. Since $a_{n} \rightarrow 0$, there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}\right|=a_{n}<\epsilon / 2$ for all $n \geq N_{1}$. Let $b_{1}=a_{N_{1}}$. Similarly, there exists $N_{2} \in \mathbb{N}$ such that $a_{n}<\epsilon / 4$ for $n \geq N_{2}$. Let $b_{2}=a_{n_{2}}$ where $n_{2}>\max \left(n_{1}, N_{2}\right)$. In general, let $N_{k} \in \mathbb{N}$ be such that $a_{n}<\epsilon / 2^{k}$ for $n \geq N_{k}$, and let $n_{k}>\max \left(n_{1}, \ldots, n_{k-1}, N_{k}\right)$. Then the series (b_{n}) converges by comparison to the geometric series, indeed

$$
\sum_{k=1}^{\infty} b_{k}<\sum_{k=1}^{\infty} \frac{\epsilon}{2^{k}}=\frac{\epsilon / 2}{1-1 / 2}=\epsilon
$$

