MATH 295A/395A: CRYPTOGRAPHY HOMEWORK #12

PROBLEMS FOR ALL

Problem 1. Let *E* be the elliptic curve given by the equation $y^2 = x^3 + x^2 + 1$ over \mathbb{F}_3 .

- (a) Determine all points of $E(\mathbb{F}_3)$.
- (b) Make an addition table for $E(\mathbb{F}_3)$.

Problem 2.

- (a) Factor n = 35 by the elliptic curve method by using the elliptic curve $y^2 = x^3 + 26$ and calculating 3 times the point P = (10, 9).
- (b) Suppose you want to factor a composite integer n by using the elliptic curve method. You start with the curve $y^2 = x^3 - 4x$ and the point (2,0). Why will this not yield the factorization of n?

Problem 3. Alice and Bob use a Diffie-Hellman exchange with the elliptic curve $E: y^2 = x^3 + 383$ over \mathbb{F}_{2003} with $\#E(\mathbb{F}_{2003}) = 2004$ and the point G = (977, 314). Alice sends Bob the point (930, 937) and Bob sends Alice the point (425, 1182). What is their common secret key? [Hint: Use baby-step giant-step to solve an elliptic curve discrete logarithm problem.]

Additional problems for 395A

Problem 4. The theorem of Hasse (second version) is the following.

Theorem (Hasse). For every elliptic curve E over the finite field \mathbb{F}_q , there exists $\pi \in \mathbb{C}$ with $|\pi| = \sqrt{q}$ such that for all $n \geq 1$, one has

$$E(\mathbb{F}_{q^n}) = (\pi^n - 1)(\overline{\pi}^n - 1).$$

- (a) Assuming this theorem, prove that $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$.
- (b) Define t_0, t_1, t_2, \dots by $t_0 = 2, t_1 = q + 1 \#E(\mathbb{F}_q)$, and

$$t_n = t_1 \cdot t_{n-1} - q t_{n-2},$$

for $n \geq 2$. Using Hasse's theorem, prove that for all n one has

$$#E(\mathbb{F}_{q^n}) = q^n + 1 - t_n.$$

The integers t_i are called the *traces of Frobenius*.

(c) Let E be the elliptic curve given by $y^2 = x^3 - x + 1$ over \mathbb{F}_3 . Determine $\#E(\mathbb{F}_3)$, prove that $E(\mathbb{F}_3) = E(\mathbb{F}_9)$, and compute $\#E(\mathbb{F}_{27})$ and $\#E(\mathbb{F}_{81})$.

Date: Due Wednesday, 10 December 2008.