MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#12

Problems for all

Problem 1. Let E be the elliptic curve given by the equation $y^{2}=x^{3}+x^{2}+1$ over \mathbb{F}_{3}.
(a) Determine all points of $E\left(\mathbb{F}_{3}\right)$.
(b) Make an addition table for $E\left(\mathbb{F}_{3}\right)$.

Problem 2.

(a) Factor $n=35$ by the elliptic curve method by using the elliptic curve $y^{2}=x^{3}+26$ and calculating 3 times the point $P=(10,9)$.
(b) Suppose you want to factor a composite integer n by using the elliptic curve method. You start with the curve $y^{2}=x^{3}-4 x$ and the point $(2,0)$. Why will this not yield the factorization of n ?

Problem 3. Alice and Bob use a Diffie-Hellman exchange with the elliptic curve $E: y^{2}=x^{3}+383$ over \mathbb{F}_{2003} with $\# E\left(\mathbb{F}_{2003}\right)=2004$ and the point $G=(977,314)$. Alice sends Bob the point $(930,937)$ and Bob sends Alice the point $(425,1182)$. What is their common secret key? [Hint: Use baby-step giant-step to solve an elliptic curve discrete logarithm problem.]

Additional problems for 395A
Problem 4. The theorem of Hasse (second version) is the following.
Theorem (Hasse). For every elliptic curve E over the finite field \mathbb{F}_{q}, there exists $\pi \in \mathbb{C}$ with $|\pi|=\sqrt{q}$ such that for all $n \geq 1$, one has

$$
E\left(\mathbb{F}_{q^{n}}\right)=\left(\pi^{n}-1\right)\left(\bar{\pi}^{n}-1\right)
$$

(a) Assuming this theorem, prove that $\left|\# E\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq 2 \sqrt{q}$.
(b) Define $t_{0}, t_{1}, t_{2}, \ldots$ by $t_{0}=2, t_{1}=q+1-\# E\left(\mathbb{F}_{q}\right)$, and

$$
t_{n}=t_{1} \cdot t_{n-1}-q t_{n-2},
$$

for $n \geq 2$. Using Hasse's theorem, prove that for all n one has

$$
\# E\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-t_{n} .
$$

The integers t_{i} are called the traces of Frobenius.
(c) Let E be the elliptic curve given by $y^{2}=x^{3}-x+1$ over \mathbb{F}_{3}. Determine $\# E\left(\mathbb{F}_{3}\right)$, prove that $E\left(\mathbb{F}_{3}\right)=E\left(\mathbb{F}_{9}\right)$, and compute $\# E\left(\mathbb{F}_{27}\right)$ and $\# E\left(\mathbb{F}_{81}\right)$.

