MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#11

Problems for all

Problem 1.

(a) Let $p=101$. Compute $\log _{2} 11$ (using complete enumeration).
(b) Let $p=27781703927$ and $g=5$. Suppose Alice and Bob engage in a Diffie-Hellman key exhange; Alice chooses the secret key $a=1002883876$ and Bob choose 21790753397. Describe the key exchange: what do Alice and Bob exchange, and what is their common (secret) key?

Problem 2.

(a) Let g be a primitive root modulo the prime p. Prove that

$$
\log _{g}\left(h_{1} h_{2}\right) \equiv \log _{g} h_{1}+\log _{g} h_{2} \quad(\bmod p-1)
$$

and

$$
\log _{g}\left(h^{n}\right) \equiv n \log _{g} h \quad(\bmod p-1) .
$$

(b) Given $3^{6} \equiv 44(\bmod 137)$ and $3^{10} \equiv 2(\bmod 137)$, compute $\log _{3} 11$.

Problem 3. Let $p=1021$. Compute $\log _{10} 228$ using the baby step-giant step method.
Problem 4. In the Diffie-Hellman key exchange protocol, Alice and Bob choose a large prime p which they make public and choose a primitive root g for p which they keep secret. Alice sends $x=g^{a}(\bmod p)$ to Bob and Bob sends $y=g^{b}(\bmod p)$ to Alice. Suppose Eve bribes Bob to tell her the values of b and y, but Eve cannot find out g. Suppose that $\operatorname{gcd}(b, p-1)=1$. Show how Eve can determine g from the knowledge of p, y and b.
Problem 5. Suppose the ElGamal system is used with $p=71, g=7$, public key $g^{b}=3$ and random integer $a=2$. What is the ciphertext for the message $x=30$?

Additional problems for 395A
Problem 6. Let $G=\langle g\rangle$ be a cyclic group generated by the element $g \in G$. For an element $h \in G$, define $\log _{g} h$ to be the smallest positive integer i such that $g^{i}=h$.
(a) Let $\sigma=(123)(45)(678910)$ and $\tau=(132)(45)(697108)$. Show that $\tau \in\langle\sigma\rangle$ and compute $\log _{\sigma} \tau$.
(b) Let $k=\mathbb{F}_{5}[X] /\left(X^{2}+X+1\right)$ and $G=k^{*}$. Show that $\langle X-1\rangle=k^{*}$ and compute $\log _{X-1}(3(X+1))$.
(c) Let $G=\mathbb{Z} / 101 \mathbb{Z}$. Compute $\log _{5}$ 13. [Hint: This is not $G=(\mathbb{Z} / p \mathbb{Z})^{*}$.]
(d) If $\# G=m$, show that the map

$$
\begin{aligned}
G & \rightarrow \mathbb{Z} / m \mathbb{Z} \\
h & \mapsto \log _{g} h
\end{aligned}
$$

is an (well-defined) isomorphism of groups.

Problem 7. Let G be a group with $\# G=n$ and let $g \in G$.
(a) Show that if $h g \neq g h$ for some $h \in H$ then $\log _{g} h$ is not defined.
(b) Show that $G=\langle g\rangle$ if and only if $g^{n / \ell} \neq 1$ for every prime $\ell \mid n$.
(c) Conclude that $g \in(\mathbb{Z} / p \mathbb{Z})^{*}$ is a primitive root if and only if $g^{(p-1) / \ell} \not \equiv 1(\bmod p)$ for every prime $\ell \mid(p-1)$, and use this to show that 2 is not a primitive root modulo $p=65537$.
(d) Let p be a prime number for which $2^{p}-1$ is prime ($q=2^{p}-1$ is called a Mersenne prime), and let $f \in \mathbb{F}_{2}[X]$ be irreducible of degree p. Let $\mathbb{F}_{2^{p}}$ be the field $\mathbb{F}_{2}[X] /(f)$. Prove that $\langle X\rangle=\mathbb{F}_{2^{p}}^{*}$.

