MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#7

Problems for all

Problem 1. Let $k \geq 2, A=(\mathbb{Z} / 2 \mathbb{Z})^{k}$, and define the maps

$$
\begin{aligned}
s, g: A \times A & \rightarrow A \times A \\
s(x, y) & =(y, x) \\
g(x, y) & = \begin{cases}(x, y), & y \neq(0,0, \ldots, 0) ; \\
(x+\underbrace{(1,1, \ldots, 1)}_{k},(0,0, \ldots, 0)), & y=(0,0, \ldots, 0) .\end{cases}
\end{aligned}
$$

(a) Prove that s^{2} and g^{2} are the identity on $A \times A$.
(b) Prove that $(s g)^{4}=s g s g s g s g$ moves only 3 elements of $A \times A$, i.e.

$$
\#\left\{(x, y) \in A \times A:(s g)^{4}(x, y) \neq(x, y)\right\}=3
$$

(c) Prove that $(\mathrm{sg})^{12}$ is the identity.

Problem 2. Encrypt the message 001100001010 using SDES and key 111000101. [Hint: After one round, the output is 001010010011 .]

Problem 3.

(a) From a cryptanalytic point of view, how important is the initial permutation in DES?
(b) Describe Triple $D E S$ as an encryption function mathematically: what are the plaintext space \mathcal{P}, the ciphertext space \mathcal{C}, and the key space \mathcal{K} ? [Hint: Read §4.6.]

Problem 4. Suppose the key for round 0 in AES consists of 128 bits, each of which is 0 . Show that the key for the first round is

$$
\left(\begin{array}{lllll}
01100010 & 01100010 & 01100010 & 01100010 \\
01100011 & 01100011 & 01100011 & 01100011 \\
01100011 & 01100011 & 01100011 & 01100011 \\
01100011 & 01100011 & 01100011 & 01100011
\end{array}\right) .
$$

Additional problems for 395A
Problem 5. For a bit string x, let \bar{x} denote the complementary string obtained by interchanging 0 s to 1s, e.g., $\overline{101100}=010011$; equivalently, $\bar{x}=x+1111 \ldots$. Show that if DES encrypts $E_{K}(x)=y$, then $E_{\bar{K}}(\bar{x})=\bar{y}$.

