MATH 295A/395A: CRYPTOGRAPHY HOMEWORK #7

PROBLEMS FOR ALL

Problem 1. Let $k \ge 2$, $A = (\mathbb{Z}/2\mathbb{Z})^k$, and define the maps

$$s, g: A \times A \to A \times A$$

$$s(x, y) = (y, x)$$

$$g(x, y) = \begin{cases} (x, y), & y \neq (0, 0, \dots, 0); \\ (x + \underbrace{(1, 1, \dots, 1)}_{k}, (0, 0, \dots, 0)), & y = (0, 0, \dots, 0). \end{cases}$$

- (a) Prove that s^2 and g^2 are the identity on $A \times A$.
- (b) Prove that $(sg)^4 = sgsgsgsg$ moves only 3 elements of $A \times A$, i.e.

 $\#\{(x,y) \in A \times A : (sg)^4(x,y) \neq (x,y)\} = 3.$

(c) Prove that $(sg)^{12}$ is the identity.

Problem 2. Encrypt the message 001100001010 using SDES and key 111000101. [Hint: After one round, the output is 001010010011.]

Problem 3.

- (a) From a cryptanalytic point of view, how important is the initial permutation in DES?
- (b) Describe *Triple DES* as an encryption function mathematically: what are the plaintext space \mathcal{P} , the ciphertext space \mathcal{C} , and the key space \mathcal{K} ? [Hint: Read §4.6.]

Problem 4. Suppose the key for round 0 in AES consists of 128 bits, each of which is 0. Show that the key for the first round is

1	01100010	01100010	01100010	01100010
	01100011	01100011	01100011	01100011
	01100011	01100011	01100011	01100011
l	01100011	01100011	01100011	01100011

Additional problems for 395A

Problem 5. For a bit string x, let \overline{x} denote the complementary string obtained by interchanging 0s to 1s, e.g., $\overline{101100} = 010011$; equivalently, $\overline{x} = x + 1111...$ Show that if DES encrypts $E_K(x) = y$, then $E_{\overline{K}}(\overline{x}) = \overline{y}$.

Date: Due Wednesday, 22 October 2008.