MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#5

Problems for all
Problem 1. Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)
$$

(a) For which n is the matrix A invertible over $\mathbb{Z} / n \mathbb{Z}$?
(b) Find its inverse if $n=100$. How many operations in $\mathbb{Z} / n \mathbb{Z}$ (i.e.,,,$+-^{-1}$) does it take to compute this inverse?

Problem 2. Suppose the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ is mistakenly used for an encryption matrix in a Hill cipher (with $n=26$). Find two plaintexts that encrypt to the same ciphertext.

Problem 3. The plaintext message
Consistency is the last refuge of the unimaginative is encrypted using a Hill cipher with with $k=3$ (and $n=26$) to get the ciphertext
voqimugocogmttfkxvlvdynhawugtfrsksoizgaanlygk
Determine the key $A \in M_{3}(\mathbb{Z} / 26 \mathbb{Z})$. The matrix key spells out a keyword: what is it?
Problem 4. The Hill cipher succumbs to a known plaintext attack if sufficient plaintext-ciphertext pairs are provided. It is even easier to break the Hill cipher if Eve can trick Alice into encrypting a chosen plaintext: this is known as a chosen plaintext attack. Describe such an attack.
Problem 5. Convert the top secret password
a6@1!*Hj
into a string of ASCII bytes, then write this string as an element of $(\mathbb{Z} / 65537 \mathbb{Z})^{4}$.
Additional problems for 395A
Problem 6. What is the probability that a randomly chosen matrix $A \in M_{2}(\mathbb{Z} / p \mathbb{Z})$ is invertible, where p is prime?

Problem 7. Let F be a field and $k \in \mathbb{Z}_{>0}$. Find an explicit polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3 in such that no more than $f(k)$ operations in F are required by the row-reduction algorithm for computing the determinant of a matrix in $M_{k}(F)$. How many of these operations are inversions?

[^0]
[^0]: Date: Due Wednesday, 8 October 2008.

