MATH 295A/395A: CRYPTOGRAPHY HOMEWORK \#2

Problems for all

Problem 1. Let $a, b \in \mathbb{Z}$.
(a) Let $\operatorname{gcd}(a, b)=g \neq 0$. Prove that $\operatorname{gcd}(a / g, b / g)=1$.
(b) Prove that $\operatorname{gcd}(a+k b, b)=\operatorname{gcd}(a, b)$ for all $k \in \mathbb{Z}$.

Problem 2. Use the extended Euclidean algorithm to compute 367^{-1} in $(\mathbb{Z} / 1001 \mathbb{Z})^{*}$ and 1001^{-1} in $(\mathbb{Z} / 367 \mathbb{Z})^{*}$.
Problem 3. The digits in base 16 are written with $10=A, 11=B, \ldots, 15=F$; e.g. $(9 B)_{16}=$ $9 \cdot 16+11=155$. Write 12538 in binary and hexadecimal.

Problem 4. Let $a, b \in \mathbb{Z}_{>0}$ with $a>b$.
(a) Show that $a-b$ can be computed in time $O(\log a)$.
(b) Suppose that the Euclidean algorithm is performed on $r_{0}=a, r_{1}=b$ with successive quotients q_{i} defined by $r_{i-1}=q_{i} r_{i}+r_{i+1}$. Show that $a \geq q_{1} \cdots q_{t}$, so that $\log a \geq \sum_{i} \log q_{i}$. Conclude that the Euclidean algorithm runs in time $O((\log a)(\log b))$.

Problem 5. Let $f_{0}=f_{1}=1$ and $f_{i+1}=f_{i}+f_{i-1}$ for $i \geq 1$ denote the Fibonacci numbers.
(a) Use the Euclidean algorithm to show that $\operatorname{gcd}\left(f_{i}, f_{i-1}\right)=1$ for all $i \geq 1$.
(b) Find $\operatorname{gcd}(11111111,11111)$.
(c) Let $a=111 \cdots 11$ be formed with f_{i} repeated 1 s and let $b=111 \cdots 11$ be formed with f_{i-1} repeated 1s. Find $\operatorname{gcd}(a, b)$. [Hint: Compare your computations in parts (a) and (b).]

Additional problems for 395A
Problem 6. The ring $\mathbb{Z}[i]=\{x+y i: x, y \in \mathbb{Z}\}$ is Euclidean under the norm $N(x+y i)=x^{2}+y^{2}$. Let $a, b \in \mathbb{Z}[i]$ be not both zero, and suppose $N(a)>N(b)$. Show that the number of divisions in the Euclidean algorithm for $\mathbb{Z}[i]$ to compute $\operatorname{gcd}(a, b)$ is $O(\log N(b))$.
Problem 7. Let $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$. Show that a^{-1} can be computed in time $O\left(\log ^{2} n\right)$.
Computational challenges
Problem C1. Write a computer program that computes the r-adic expansion of a positive integer a for any $r \in \mathbb{Z}_{>1}$.

