MATH 20C: FUNDAMENTALS OF CALCULUS II WORKSHEET, DAY #40 (FINAL REVIEW)

The following is a sampling of some problems that relate to the material covered in the course. It does not cover all topics: in particular, there are no problems on probability and statistics. It is intended to help you study for the final exam, which will be on Thursday, December 18, at 3:30 p.m.

1. Multiple Choice

Problem 1. If the marginal cost function is given by $T'(x) = 3x^2 + 4x + 3$, then a general expression for the total cost function would be:

(a) $T(x) = x^3 + 2x^2 + C$ (b) T(x) = 6x + 4 + C(c) $T(x) = x^3 + 2x^2 + 3x + C$ (d) $T(x) = 3x^3 + 4x^2 + 3x + C$.

Problem 2. A function gives the rate of depreciation of a piece of farm machinery from the first through the fifth year. Interpret the area under the graph of this function.

- (a) The total change in value of the machinery over the four year period.
- (b) The value of the machinery at the end of the four year period.
- (c) The average value of the machinery during the four year period.
- (d) The total change in value of the machinery since it was purchased.

Problem 3. The definite integral $\int_{a}^{b} f(x) dx =$ ______, where F is the antiderivative of f.

- (a) F(a) F(b)
- (b) f'(b) f'(a)
- (c) F(b-a)
- (d) F(b) f(a)

Problem 4. The area enclosed by the curves y = 1/x and y = 2x from x = 1 to x = e is:

- (a) 2e
- (b) e + 1
- (c) $e^2 + 1$
- (d) $e^2 2$

Problem 5. If an integral is ______, then there is a finite area under the curve being graphed.

- (a) divergent
- (b) convergent
- (c) improper
- (d) rational

Date: Wednesday, December 10, 2008.

Problem 6. The function $C(x, y, z) = \frac{2x^2 - 4xy + zxy}{x}$ is:

- (a) linear
- (b) a second-order regression
- (c) differential
- (d) both linear and a second-order regression

Problem 7. Compute F(-1, 2, -3) for $F(x, y, z) = y - \sqrt{xyz - 2}$

- (a) 1
- (b) -5
- (c) 0
- (d) 2

Problem 8. Given the graph of the function f(x, y), if z is set equal to a constant, we will obtain a curve resulting from a slice parallel to the _______ -plane.

- (a) xy
- (b) xz
- (c) yz

Problem 9. Determine f_{xy} for $f(x, y) = x\sqrt{y}$.

(a)
$$\frac{1}{2\sqrt{y}}$$

(b) $\sqrt{y} + \frac{x}{2\sqrt{y}}$
(c) $\frac{1}{\sqrt{y}}$
(d) $\frac{1}{2x\sqrt{y}}$

Problem 10. Evaluate f_x at the point (3, -1) for $f(x, y) = 2x^2y - 3xy^3$.

- (a) -15
- (b) 0
- (c) 15
- (d) -9

Problem 11. For $h(x, y) = x^2 + y^2 - 10x - 2y + 36$:

- (a) h(0,0) is a relative maximum.
- (b) h(5,1) is a relative minimum.
- (c) h(5,1) is a relative maximum.
- (d) None of the above.

Problem 12. A rectangular piece of cardboard with length x and height y has squares of length z cut from its corners. The cardboard is then bent up to form an open-topped box. What is the volume of the box?

(a) V(x, y, z) = xyz(b) V(x, y, z) = (x - 2z)(y - 2z)z(c) $V(x, y, z) = xyz^2$ (d) V(x, y, z) = (x - z)(y - z)z

2. Free Response

Problem 1.

Problem 2. Evaluate the integral $\int \frac{\sin x}{\sqrt{1-2\cos x}} dx$. **Problem 3.** Evaluate the integral $\int (8x-1)e^{x-4x^2} dx$.

Problem 4. Calculate the left Riemann sum to approximate $\int_{-1}^{1} x^2 dx$ using n = 6 subintervals.

Problem 5. A worker can assemble toaster ovens at the rate of $-3t^2 + 12t + 5$ ovens per hour. How many ovens can be assembled in the first half of an 8-hour shift?

Problem 6. Evaluate the integral $\int x(x-3)^4 dx$.

Problem 7. Determine the equation of the curve that passes through the point (0,0) and has slope xe^x .

Problem 8.

- (a) Evaluate the integral $\int \frac{\cos x}{\sin^2 x} dx$. (b) Find the average value of the function $f(x) = 6 \sin 3x$ on the interval $[0, \pi]$.

Problem 9. Find the average value of the function $\frac{\ln x}{x^2}$ on the interval $[e, e^2]$.

Problem 10. Find the future value of the income stream R(t) = 20t for $0 \le t \le 5$ at 4%.

Problem 11. Determine whether the integral $\int_2^{\infty} (5/x^2) dx$ converges or diverges. If it converges, determine its value.

Problem 12. Find the solution to the differential equation $\frac{dy}{dx}y^{-2} = 4x^3$ which has the value y = 2 when x = 1.

Problem 13. Find
$$\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y^2}$$
 for the function $f(x, y) = \frac{4x^2}{y} + \frac{y^2}{2x}$.

Problem 14. Classify the critical points of $f(x, y) = x^3 + y^3 - 6xy$.

Problem 15. Find the minimum value of the function f(x, y, z) = 2xy - xz + x subject to the condition that xyz = 10.

Problem 16. A company wishes to design a rectangular box whose length, width, and double the height total to 4 inches. Find the dimensions that will maximize the volume.

Problem 17. Use Lagrange multipliers to find the maximum and minimum values for the function $f(x,y) = 2x^2 - y^2 - 18x + 2$ subject to $x^2 + y^2 = 25$.