MATH 20C: FUNDAMENTALS OF CALCULUS II WORKSHEET, DAY \#34 (EXAM \#3 REVIEW)

Problem 1. Fill in the blank.
(a) The graph of a linear function is a \qquad .
(b) The level curves of a linear function are \qquad .
(c) The function $f(x, y, z)=15+x y+z$ is \qquad .
(d) The set of points (x, y) such that $(x+3)^{2}+(y-1)^{2}=4$ is a
(e) The z-coordinate of a point is its \qquad above the $x y$-plane.

Problem 2. Find the value of k such that $(2, k)$ is equidistant from $(0,0)$ and $(-1,2)$.

Problem 3. For $z=f(x, y)=3 y^{2}-2 x^{2}$, find the equation of the cross section at $y=1$ and give a description of this curve.

Problem 4. For $f(x, y)=\ln \left(x^{2} y+x\right)$, compute the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$.

Problem 5. For $f(x, y)=x^{2} y^{4}+5 y^{2}-e^{x^{2} y}-7$, compute the partial derivatives $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}, \frac{\partial^{2} f}{\partial x \partial y}$.

Problem 6. Find all releative extreme values of $f(x, y, z)=x^{3}+x^{2}-x+y^{2}-y+z^{2}-z-1$ subject to $x+y+z=0$. Use substitution to find and classify the critical points.

