MATH 20C: FUNDAMENTALS OF CALCULUS II WORKSHEET, DAY \#17

Problem 1. Find the total value of the income stream $R(t)=40000$ on the interval $0 \leq t \leq 5$ and find its future value at the end of the interval using the interest rate 10%.
Solution. We have the total value is $(a=0, b=5)$

$$
T V=\int_{a}^{b} R(t) d t=\int_{0}^{5} 40000 d t=\left.40000 t\right|_{0} ^{5}=\$ 200000
$$

To compute the future value, we have $r=0.1$, so

$$
F V=\int_{a}^{b} R(t) e^{r(b-t)} d t=\int_{0}^{5} 40000 e^{0.1(5-t)} d t=-\left.\frac{40000}{0.1} e^{0.1(5-t)}\right|_{0} ^{5}=\$ 259.488 .51
$$

Problem 2. Find the total value of the income stream $R(t)=50000+2000 t$ on the interval $0 \leq t \leq 10$ and find its present value at the beginning of the interval using the interest rate 5%.
Solution. The total value is

$$
T V=\int_{0}^{10}(50000+2000 t) d t=\left.\left(50000 t+1000 t^{2}\right)\right|_{0} ^{10}=\$ 600000
$$

The present value is $(r=0.05)$

$$
P V=\int_{a}^{b} R(t) e^{r(a-t)} d t=\int_{0}^{10}(50000+2000 t) e^{-0.05 t} d t
$$

Use integration by parts with $u=50000+2000 t$ and $v=e^{-0.05 t}$ to obtain

$$
\int_{0}^{10}(50000+2000 t) e^{-0.05 t} d t=\left.\left((-1000000+40000 t) e^{-0.05 t}-800000 e^{-0.05 t}\right)\right|_{0} ^{10}=\$ 465632.55
$$

Problem 3. You begin saving for your retirement by investing $\$ 700$ per month in an annuity with a guaranteed interest rate of 6% per year. You increase the amount you invest at the rate of 3% per year. With continuous investment and compounding, how much will you have accumulated in the annuity by the time you retire in 45 years?

Solution. The revenue stream is $R(t)=12 \times 700 e^{0.03 t}=8400 e^{0.03 t}$ since you do it for each month. So the future value is

$$
\int_{0}^{45}\left(8400 e^{0.03 t}\right) e^{0.06(45-t)} d t=8400 e^{2.7} \int_{0}^{45} e^{-0.03 t} d t=-\left.280000 e^{2.7} e^{-0.03 t}\right|_{0} ^{45}=\$ 3086245.73
$$

See why you should start saving now?

