MATH 20C: FUNDAMENTALS OF CALCULUS II QUIZ #8

Problem 1.

(a) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ for

$$f(x,y) = \frac{1}{4xy^2 + 3x + 1}.$$

Solution. We write $f(x,y) = (4xy^2 + 3x + 1)^{-1}$. Then

$$\frac{\partial f}{\partial x} = -(4y^2 + 3)(4xy^2 + 3x + 1)^{-2}$$

and

$$\frac{\partial f}{\partial y} = -(8xy)(4xy^2 + 3x + 1)^{-2}.$$

(b) Find
$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y^2}$ for

$$f(x,y) = e^{xy}$$

Solution. We have $\frac{\partial f}{\partial x} = ye^{xy}$ and $\frac{\partial f}{\partial y} = xe^{xy}$. So

$$\frac{\partial^2 f}{\partial x^2} = y^2 e^{xy}$$
 $\frac{\partial^2 f}{\partial x^2} = x^2 e^{xy}$

and

$$\frac{\partial^2 f}{\partial x\,\partial y} = \frac{\partial}{\partial x}(xe^{xy}) = e^{xy} + x(ye^{xy}) = (1+xy)e^{xy}.$$

Problem 2.

(a) Find all critical points of the function

$$f(x,y) = x^2 - xy^2 + \frac{1}{5}y^5.$$

Solution. We set

$$\frac{\partial f}{\partial x} = 2x - y^2 = 0$$

and

$$\frac{\partial f}{\partial y} = -2xy + y^4 = 0.$$

In the first equation, we can solve for x to obtain $2x = y^2$ so $x = y^2/2$; substituting this into the second equation, we get

$$-2(y^2/2)y + y^4 = -y^3 + y^4 = 0$$

or equivalently

$$y^4 - y^3 = y^3(y - 1) = 0$$

so y = 0, 1. Substituting these into $x = y^2/2$ gives the critical points (0,0), (1/2,1).

(b) Compute the Hessian

$$H = f_{xx}f_{yy} - f_{xy}^2.$$

Which of the two critical points is a local minimum?

Solution. We compute that

$$f_{xx} = 2$$

$$f_{yy} = -2x + 4y^3$$

$$f_{xy} = -2y$$

so

$$H = 2(-2x + 4y^3) - (-2y)^2 = -4x + 8y^3 - 4y^2$$

So H(0,0) = 0 and so we cannot determine from the Hessian what kind of critical point it is; however, H(1/2,1) = -2 + 8 - 4 = 2 > 0 and $f_{xx} = 2 > 0$ so the point (1/2,1) is a local minimum.