MATH 20C: FUNDAMENTALS OF CALCULUS II QUIZ \#8

Problem 1.
(a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

$$
f(x, y)=\frac{1}{4 x y^{2}+3 x+1}
$$

Solution. We write $f(x, y)=\left(4 x y^{2}+3 x+1\right)^{-1}$. Then

$$
\frac{\partial f}{\partial x}=-\left(4 y^{2}+3\right)\left(4 x y^{2}+3 x+1\right)^{-2}
$$

and

$$
\frac{\partial f}{\partial y}=-(8 x y)\left(4 x y^{2}+3 x+1\right)^{-2}
$$

(b) Find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y^{2}}$ for

$$
f(x, y)=e^{x y}
$$

Solution. We have $\frac{\partial f}{\partial x}=y e^{x y}$ and $\frac{\partial f}{\partial y}=x e^{x y}$. So

$$
\frac{\partial^{2} f}{\partial x^{2}}=y^{2} e^{x y} \quad \frac{\partial^{2} f}{\partial x^{2}}=x^{2} e^{x y}
$$

and

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(x e^{x y}\right)=e^{x y}+x\left(y e^{x y}\right)=(1+x y) e^{x y}
$$

Problem 2.

(a) Find all critical points of the function

$$
f(x, y)=x^{2}-x y^{2}+\frac{1}{5} y^{5}
$$

Solution. We set

$$
\frac{\partial f}{\partial x}=2 x-y^{2}=0
$$

and

$$
\frac{\partial f}{\partial y}=-2 x y+y^{4}=0
$$

In the first equation, we can solve for x to obtain $2 x=y^{2}$ so $x=y^{2} / 2$; substituting this into the second equation, we get

$$
-2\left(y^{2} / 2\right) y+y^{4}=-y^{3}+y^{4}=0
$$

or equivalently

$$
y^{4}-y^{3}=y^{3}(y-1)=0
$$

so $y=0,1$. Substituting these into $x=y^{2} / 2$ gives the critical points $(0,0),(1 / 2,1)$.
(b) Compute the Hessian

$$
H=f_{x x} f_{y y}-f_{x y}^{2}
$$

Which of the two critical points is a local minimum?

Solution. We compute that

$$
\begin{aligned}
& f_{x x}=2 \\
& f_{y y}=-2 x+4 y^{3} \\
& f_{x y}=-2 y
\end{aligned}
$$

so

$$
H=2\left(-2 x+4 y^{3}\right)-(-2 y)^{2}=-4 x+8 y^{3}-4 y^{2}
$$

So $H(0,0)=0$ and so we cannot determine from the Hessian what kind of critical point it is; however, $H(1 / 2,1)=-2+8-4=2>0$ and $f_{x x}=2>0$ so the point $(1 / 2,1)$ is a local minimum.

