MATH 20C: FUNDAMENTALS OF CALCULUS II QUIZ \#8 (REPEAT)

Problem 1.

(a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

$$
f(x, y)=\left(3 x^{2} y^{2}-5 x+6\right)^{4}
$$

Solution. We have

$$
\frac{\partial f}{\partial x}=4\left(6 x y^{2}-5\right)\left(3 x^{2} y^{2}-5 x+6\right)^{3}
$$

and

$$
\frac{\partial f}{\partial y}=4\left(6 x^{2} y\right)\left(3 x^{2} y^{2}-5 x+6\right)^{3}
$$

(b) Find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y^{2}}$ for

$$
f(x, y)=e^{x^{2}+y^{2}}
$$

Solution. We have

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x e^{x^{2}+y^{2}} \\
& \frac{\partial f}{\partial y}=2 y e^{x^{2}+y^{2}}
\end{aligned}
$$

so by the product rule (and symmetry)

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=2 e^{x^{2}+y^{2}}+2 x(2 x) e^{x^{2}+y^{2}}=\left(4 x^{2}+2\right) e^{x^{2}+y^{2}} \\
& \frac{\partial^{2} f}{\partial y^{2}}=\left(4 y^{2}+2\right) e^{x^{2}+y^{2}}
\end{aligned}
$$

and

$$
\frac{\partial^{2} f}{\partial x \partial y}=2 x(2 y) e^{x^{2}+y^{2}}=4 x y e^{x^{2}+y^{2}}
$$

Problem 2.

(a) Find all critical points of the function

$$
f(x, y)=y^{2}-x^{2} y+2 x^{3}
$$

Which of the two points is a saddle point?
Solution. We have $f_{x}=-2 x y+6 x^{2}=0$ and $f_{y}=2 y-x^{2}=0$. Solving for y in the second equation gives $y=x^{2} / 2$, and substituting this into the first equation gives

$$
-2 x\left(\frac{x^{2}}{2}\right)+6 x^{2}=-x^{3}+6 x^{2}=-x^{2}(x-6)=0
$$

so $x=0,6$. Substituting into $y=x^{2} / 2$ gives $y=0,18$ so the critical points are $(0,0)$ and $(6,18)$.
(b) Compute the Hessian

$$
H=f_{x x} f_{y y}-f_{x y}^{2}
$$

Solution. We have

$$
\begin{aligned}
& f_{x x}=-2 y+12 x \\
& f_{x y}=-2 x \\
& f_{y y}=2
\end{aligned}
$$

so the Hessian is

$$
H=(-2 y+12 x) 2-(-2 x)^{2}=-4 y+24 x-4 x^{2}
$$

Then $H(0,0)=0$ gives us no information about what kind of critical point it is; however, $H(6,18)=$ $-4(18)+24(6)-4\left(6^{2}\right)=-72<0$ so $(6,18)$ is a saddle point.

