MATH 20C: FUNDAMENTALS OF CALCULUS II
 QUIZ \#7

Problem 1. Label each graph below with the corresponding equation.
(a) $f(x, y)=1-x-y$.
(b) $f(x, y)=y^{2}-x^{2}$.
(c) $f(x, y)=e^{x}$.
(d) $f(x, y)=x^{2}+y^{2}+1$.

Solution. The answer is (d), (c), (a), (b).
Problem 2. Describe the cross section of $f(x, y)=1+2 \sqrt{x^{2}+y^{2}}$ at $z=3$.
Solution. We have $z=f(x, y)=1+2 \sqrt{x^{2}+y^{2}}=3$, so $2 \sqrt{x^{2}+y^{2}}=2$ or $\sqrt{x^{2}+y^{2}}=1$ so by squaring we get $x^{2}+y^{2}=1$: this is a circle of radius 1 centered at the origin.
Problem 3. Compute the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ of $f(x, y)=x y^{4}-x^{5} y^{2}+15$ and evaluate them at the point $(0,1)$.

Solution. We compute:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=y^{4}-5 x^{4} y^{2} \\
& \frac{\partial f}{\partial y}=4 x y^{3}-2 x^{5} y
\end{aligned}
$$

so

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial x}\right|_{(0,1)}=1 \\
& \left.\frac{\partial f}{\partial y}\right|_{(0,1)}=0
\end{aligned}
$$

