MATH 20C: FUNDAMENTALS OF CALCULUS II QUIZ #7

Problem 1. Label each graph below with the corresponding equation.

(a)
$$f(x, y) = 1 - x - y$$
.
(b) $f(x, y) = y^2 - x^2$.
(c) $f(x, y) = e^x$.
(d) $f(x, y) = x^2 + y^2 + 1$.

Solution. The answer is (d), (c), (a), (b).

Problem 2. Describe the cross section of $f(x, y) = 1 + 2\sqrt{x^2 + y^2}$ at z = 3.

Solution. We have $z = f(x, y) = 1 + 2\sqrt{x^2 + y^2} = 3$, so $2\sqrt{x^2 + y^2} = 2$ or $\sqrt{x^2 + y^2} = 1$ so by squaring we get $x^2 + y^2 = 1$: this is a circle of radius 1 centered at the origin.

Problem 3. Compute the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ of $f(x, y) = xy^4 - x^5y^2 + 15$ and evaluate them at the point (0, 1).

Solution. We compute:

$$\frac{\partial f}{\partial x} = y^4 - 5x^4y^2$$
$$\frac{\partial f}{\partial y} = 4xy^3 - 2x^5y$$

 \mathbf{SO}

$$\frac{\partial f}{\partial x}\Big|_{(0,1)} = 1$$

$$\frac{\partial f}{\partial y}\Big|_{(0,1)} = 0$$

Date: Wednesday, November 5, 2008.