MATH 20C: FUNDAMENTALS OF CALCULUS II QUIZ #6

Problem 1. Solve the differential equation $\frac{dy}{dx} = 3x^2y$ subject to the initial condition y = 2 when x = 0. Solution. We have

$$\frac{dy}{dx} = 3x^2y$$
$$\frac{dy}{y} = 3x^2 dx$$
$$\int \frac{dy}{y} = \int 3x^2 dx$$
$$\ln |y| = x^3 + C$$
$$y = e^{\ln |y|} = e^{x^3 + C} = Ce^{x^3}$$

We substitute to find $2 = Ce^0 = C$, so $y = 2e^{x^3}$.

Problem 2.

- (a) If $f(x,y) = \frac{x^2 y^2}{x^2 + y^2 + 1}$, compute f(0,0) and f(a,-1). Solution. We have f(0,0) = 0 and $f(a,-1) = \frac{a^2 - (-1)^2}{a^2 + (-1)^2 + 1} = \frac{a^2 - 1}{a^2 + 2}$.
- (b) Is the function f(x, y, z) = x 10000y 0.5z + xyz a linear function? Solution. No: a linear function is composed of terms of degree 1 in every variable: xyz has degree 3.
- (c) Find the distance between the points (3, 2) and (5, -3). Solution. The distance is $\sqrt{(5-3)^2 + (-3-2)^2} = \sqrt{2^2 + 5^2} = \sqrt{29}$.

Date: Wednesday, October 29, 2008.