MATH 20C: FUNDAMENTALS OF CALCULUS II QUIZ \#6

Problem 1. Solve the differential equation $\frac{d y}{d x}=3 x^{2} y$ subject to the initial condition $y=2$ when $x=0$. Solution. We have

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2} y \\
\frac{d y}{y} & =3 x^{2} d x \\
\int \frac{d y}{y} & =\int 3 x^{2} d x \\
\ln |y| & =x^{3}+C \\
y=e^{\ln |y|} & =e^{x^{3}+C}=C e^{x^{3}}
\end{aligned}
$$

We substitute to find $2=C e^{0}=C$, so $y=2 e^{x^{3}}$.

Problem 2.

(a) If $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}+1}$, compute $f(0,0)$ and $f(a,-1)$.

Solution. We have $f(0,0)=0$ and $f(a,-1)=\frac{a^{2}-(-1)^{2}}{a^{2}+(-1)^{2}+1}=\frac{a^{2}-1}{a^{2}+2}$.
(b) Is the function $f(x, y, z)=x-10000 y-0.5 z+x y z$ a linear function?

Solution. No: a linear function is composed of terms of degree 1 in every variable: $x y z$ has degree 3 .
(c) Find the distance between the points $(3,2)$ and $(5,-3)$.

Solution. The distance is $\sqrt{(5-3)^{2}+(-3-2)^{2}}=\sqrt{2^{2}+5^{2}}=\sqrt{29}$.

