MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

1. Multiple Choice

(1) (b)
(2) (d)
(3) (a) $(4-(-2)) / 8=0.75$.
(4) (c) The graphs cross at the points $x=-1,0,1$; from $[-1,0]$ the graph of $y=x^{3}$ is above $y=x$ and vice versa on $[0,1]$.
(5) (c)
(6) (a)
(7) (b) Integration by parts gives $\int_{0}^{1} x^{2} e^{x} d x=\left.\left(x^{2}-2 x+2\right) e^{x}\right|_{0} ^{1}=e-2$.
(8) (a) The average population is $\frac{1}{30} \int_{0}^{30} 5 e^{0.023 t} d t=\left.\frac{1}{6(0.023)} e^{0.023 t}\right|_{0} ^{30}=7.2$.
(9) (b)
(10) (c) $\int_{1}^{\infty} e^{-3 t} d t=\lim _{M \rightarrow \infty}-e^{-3 t} / 3=1 /\left(3 e^{3}\right)$.
(11) (b)
(12) (c)
(13) (b)
(14) (a)
(15) (b)
(16) (b)
(17) (d)
(18) (a)
(19) (b)
(20) (d)

2. Free Response

(1) $(\ln x)^{7} / 7+C$ (substitute $\left.u=\ln x\right)$.
(2) $1 / 2(1 /(1+2)+1 /(1+3)+1 /(1+4)+1 /(1+5))=19 / 40$.
(3) $\frac{\sin \left(4 x^{3}-3 x\right)}{3}+C$ (substitute $\left.u=4 x^{3}-3 x\right)$.
(4) $F V=\int_{0}^{10} 1200 t e^{0.1(10-t)} d t=\left.12000 e^{-0.1 t+1}(t+10)\right|_{0} ^{10}=-12000\left(-20+10 e^{1}\right)=\$ 86193$.
(5) $1 / y d y=6 x d x$ so $\ln y=3 x^{2}+C$ so $y=C e^{3 x^{2}}=-3 e^{3 x^{2}}$.
(6) $f_{x}=-y e^{-x y}$ and $f_{y}=-x e^{-x y}$ so $f_{x x}=y^{2} e^{-x y}$ and $f_{y y}=x^{2} e^{-x y} ; f_{x y}=-e^{-x y}+(-y)(-x) e^{-x y}=$ $(x y-1) e^{-x y}$ by the product rule.
(7) $f_{x}=6 x y-6 x=6 x(y-1)=0$ and $f_{y}=3 x^{2}+3 y^{2}-6 y=0$; the first equation has solutions $x=0$ and $y=1$, so substituting these into the second equation gives $3 y(y-2)=0$ and $3 x^{2}-3=3\left(x^{2}-1\right)=0$ so the critical points are $(0,0),(0,2),(\pm 1,1)$.
(8) $2 / x^{2} \geq 0$ for $x \geq 2$ and $\int_{2}^{\infty} 2 / x^{2}=\lim _{M \rightarrow \infty}-2 /\left.x\right|_{2} ^{M}=1$.
(9) $g=x^{2}+y^{2}-8$, so we have $f_{x}=2 y=\lambda g_{x}=\lambda(2 x)$ so $y=\lambda x$ and similarly $x=\lambda y$; solving $\lambda=y / x$ and substituting gives $x=y^{2} / x$ so $x^{2}=y^{2}$; hence $2 x^{2}=8$ so $x= \pm 2=y$ and the maximum value is $2 x y=2(2)(2)=8$.
(10) We minimize the surface area $S=2 \ell h+2 \ell w+w h$ subject to $\ell h w=32$; solving for $\ell=32 / w h$ and substituting gives $S=64 / w+64 / h+w h$; then $S_{w}=-64 / w^{2}+h=0$ and $S_{h}=-64 / h^{2}+w=0$; solving $h=64 / w^{2}$ and substituting gives $w=-64 /\left(64 / w^{2}\right)^{2}=w^{4} / 64$ so $w^{3}=64$ so $w=4$ and $h=64 / 16=4$ and $\ell=32 / 16=2$, so the dimensions are $2 \times 4 \times 4$ inches .

