MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

1. Multiple Choice

- (1) (b)
- (2) (d)
- (3) (a) (4 (-2))/8 = 0.75.
- (4) (c) The graphs cross at the points x = -1, 0, 1; from [-1, 0] the graph of $y = x^3$ is above y = x and vice versa on [0, 1].
- (5) (c)
- (6) (a)
- (7) (b) Integration by parts gives $\int_0^1 x^2 e^x dx = (x^2 2x + 2)e^x \Big|_0^1 = e 2.$ (8) (a) The average population is $\frac{1}{30} \int_0^{30} 5e^{0.023t} dt = \frac{1}{6(0.023)}e^{0.023t} \Big|_0^{30} = 7.2.$
- (9) (b)
- (10) (c) $\int_{1}^{\infty} e^{-3t} dt = \lim_{M \to \infty} -e^{-3t}/3 = 1/(3e^3).$
- (11) (b)
- (12) (c)
- (13) (b)
- (14) (a)
- (15) (b)
- (16) (b)
- (17) (d) (18) (a)
- (19) (b)
- (20) (d)

2. Free Response

- (1) $(\ln x)^7/7 + C$ (substitute $u = \ln x$).
- (2) 1/2(1/(1+2) + 1/(1+3) + 1/(1+4) + 1/(1+5)) = 19/40.

- (2) $\frac{1}{2}(\frac{1}{2}(\frac{1}{2}+\frac{1}{2})+\frac{1}{2}$ $(xy-1)e^{-xy}$ by the product rule.
- (7) $f_x = 6xy 6x = 6x(y-1) = 0$ and $f_y = 3x^2 + 3y^2 6y = 0$; the first equation has solutions x = 0 and y = 1, so substituting these into the second equation gives 3y(y-2) = 0 and $3x^2 - 3 = 3(x^2 - 1) = 0$ so the critical points are $(0,0), (0,2), (\pm 1,1)$.
- (8) $2/x^2 \ge 0$ for $x \ge 2$ and $\int_2^\infty 2/x^2 = \lim_{M \to \infty} -2/x \Big|_2^M = 1$. (9) $g = x^2 + y^2 8$, so we have $f_x = 2y = \lambda g_x = \lambda(2x)$ so $y = \lambda x$ and similarly $x = \lambda y$; solving $\lambda = y/x$ and substituting gives $x = y^2/x$ so $x^2 = y^2$; hence $2x^2 = 8$ so $x = \pm 2 = y$ and the maximum value is 2xy = 2(2)(2) = 8.
- (10) We minimize the surface area $S = 2\ell h + 2\ell w + wh$ subject to $\ell hw = 32$; solving for $\ell = 32/wh$ and substituting gives S = 64/w + 64/h + wh; then $S_w = -64/w^2 + h = 0$ and $S_h = -64/h^2 + w = 0$; solving $h = 64/w^2$ and substituting gives $w = -64/(64/w^2)^2 = w^4/64$ so $w^3 = 64$ so w = 4 and h = 64/16 = 4 and $\ell = 32/16 = 2$, so the dimensions are $2 \times 4 \times 4$ inches.