MATH 20C: FUNDAMENTALS OF CALCULUS II EXAM \#3

Problem 1.
(a) Which one of the following functions is linear?

$$
\begin{aligned}
f(x, y, z) & =\frac{2 x+3 y-5 z}{7} \\
g(x, y, z, w) & =x+y+z+w+x y+z w \\
h(x, y) & =5 x+6 y^{2} .
\end{aligned}
$$

Solution. Only $f(x, y, z)$ is linear.
(b) Your weekly cost (in dollars) to manufacture x gallons of maple syrup and y pounds of maple butter is

$$
C(x, y)=1839+30 x+50 y
$$

What is the marginal cost of a gallon of maple syrup? What does the slice $y=$ constant represent?
Solution. The marginal cost is $C_{x}=30$ dollars per gallon (per week). The slice $y=$ constant represents the weekly cost in dollars to manufacture x gallons and a fixed amount of maple butter.

Problem 2. For the function

$$
z=f(x, y)=2 \sqrt{x^{2}+y^{2}}-9
$$

find the equation of the level curve where $z=-5$. Give a description of the graph of this curve.
Solution. We have $-5=2 \sqrt{x^{2}+y^{2}}-9$ or $4=2 \sqrt{x^{2}+y^{2}}$ which after dividing by 2 and squaring yields $4=x^{2}+y^{2}$: this is a circle centered at $(0,0)$ with radius 2 .
Problem 3. Find the $x-, y$-, and z-intercepts of the function

$$
z=f(x, y)=y^{2}+2 x y+4 x^{2}-4 .
$$

Solution. To find the x-intercept, we set $y=z=0$ to obtain $0=4 x^{2}-4$ so $x= \pm 1$, so the x-intercepts are $(\pm 1,0,0)$. For the y-intercepts we set $x=z=0$ to obtain $y^{2}-4=0$ so $y= \pm 2$ and hence they are $(0, \pm 2,0)$. Similarly, we obtain the z-intercept as $(0,0,-4)$.
Problem 4. Label each graph below with the corresponding equation.
(a) $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$.
(b) $f(x, y)=x^{2}$.
(c) $f(x, y)=x+y+1$.
(d) $f(x, y)=x^{2}-2 y^{2}$.

Solution. The answer is (b),(c),(d),(a).
Problem 5. Find the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ of the function

$$
f(x, y)=\frac{1}{4 x^{2}+3 y-5 x y}
$$

Solution. Writing $f(x, y)=\left(4 x^{2}+3 y-5 x y\right)^{-1}$ we obtain from the chain rule:

$$
\begin{aligned}
& f_{x}=-1\left(4 x^{2}+3 y-5 x y\right)^{-2}(8 x-5 y)=\frac{5 y-8 x}{\left(4 x^{2}+3 y-5 x y\right)^{2}} \\
& f_{y}=-1\left(4 x^{2}+3 y-5 x y\right)^{-2}(3-5 x)=\frac{5 x-3}{\left(4 x^{2}+3 y-5 x y\right)^{2}}
\end{aligned}
$$

Problem 6. Find the partial derivatives $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y^{2}}$ for

$$
f(x, y)=e^{-2 x y}
$$

Solution. We have $f_{x}=-2 y e^{-2 x y}$ and $f_{y}=-2 x e^{-2 x y}$. So $f_{x x}=4 y^{2} e^{-2 x y}$ and $f_{y y}=4 x^{2} e^{-2 x y}$, and by the product rule

$$
f_{x y}=-2 e^{-2 x y}+(-2 x)(-2 y) e^{-2 x y}=(4 x y-2) e^{-2 x y}
$$

Problem 7. Locate (but do not classify) all the critical points of the function

$$
f(x, y)=x y+\frac{4}{x}+\frac{2}{y}
$$

Solution. Writing $f(x, y)=x y+4 x^{-1}+2 y^{-1}$ we obtain

$$
\begin{aligned}
& f_{x}=y-4 x^{-2}=0 \\
& f_{y}=x-2 y^{-2}=0
\end{aligned}
$$

Solving for y in the first equation gives $y=4 x^{-2}$, and substituting this into the second equation yields $x-2\left(4 x^{-2}\right)^{-2}=x-x^{4} / 8=0$. Multiplying by -8 gives $x^{4}-8 x=x\left(x^{3}-8\right)=0$ so $x=0$ or $x=2$. Substituting back into $y=4 x^{-2}$ gives respectively y is undefined and $y=1$, so the only critical point is $(2,1)$.

Problem 8. The function

$$
f(x, y)=2 x^{2}+y^{2}-x^{2} y^{2}
$$

has a critical point at $(0,0)$. Determine if this point is a relative maximum, relative minimum, or saddle point.

Solution. We have $f_{x}=4 x-2 x y^{2}$ and $f_{y}=2 y-2 x^{2} y$. So $f_{x x}=4-2 y^{2}, f_{x y}=-4 x y$ and $f_{y y}=2-2 x^{2}$. Thus the Hessian is

$$
H=\left(4-2 y^{2}\right)\left(2-2 x^{2}\right)-(-4 x y)^{2}
$$

so $H(0,0)=8>0$ and $f_{x x}(0,0)=4>0$ so the point is a relative minimum.

