MATH 20C: FUNDAMENTALS OF CALCULUS II EXAM \#1

Problem 1.

(a) Evaluate the integral

$$
\int\left(4 x^{3}+x^{2}\right) d x
$$

(b) Evaluate the integral

$$
\int x\left(x^{1.5}-x^{-1}+\frac{3}{x^{2}}\right) d x
$$

Solution. For (a), we have

$$
\int\left(4 x^{3}+x^{2}\right) d x=x^{4}+\frac{x^{3}}{3}+C .
$$

For (b), we multiply out to obtain

$$
\int x\left(x^{1.5}-x^{-1}+\frac{3}{x^{2}}\right) d x=\int\left(x^{2.5}-1+3 x^{-1}\right) d x=\frac{x^{3.5}}{3.5}-x+3 \ln |x|+C=\frac{2}{7} x^{3.5}-x+3 \ln |x|+C .
$$

Problem 2. The slope of the function $f(x)$ at the point $(x, f(x))$ is equal to $9-e^{x}$ and $f(0)=1$. Find the function $f(x)$.

Solution. We are given that $f^{\prime}(x)=9-e^{x}$, since the derivative is the slope, so $f(x)=9 x-e^{x}+C$. Since $f(0)=-1+C=1$, we have $C=2$, so $f(x)=9 x-e^{x}+2$.

Problem 3. Evaluate the integral

$$
\int \frac{x^{2}}{\left(x^{3}-7\right)^{0.7}} d x
$$

Solution. We make the subtitution $u=x^{3}-7$, so $d u=\left(3 x^{2}\right) d x$ or $x^{2} d x=d u / 3$. Then

$$
\int \frac{x^{2}}{\left(x^{3}-7\right)^{0.7}} d x=\int \frac{1}{u^{0.7}} \frac{d u}{3}=\frac{1}{3} \int u^{-0.7} d u=\frac{1}{3} \frac{u^{0.3}}{0.3}+C=\frac{10}{9}\left(x^{3}-7\right)^{0.3}+C .
$$

Problem 4. Evaluate the integral

$$
\int(2 x-3) e^{2 x^{2}-6 x} d x
$$

Solution. We make the substitution $u=2 x^{2}-6 x$, so that $d u=(4 x-6) d x=2(2 x-3) d x$, or $(2 x-3) d x=$ $d u / 2$. Thus

$$
\int(2 x-3) e^{2 x^{2}-6 x} d x=\int e^{u} \frac{d u}{2}=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{2 x^{2}-6 x}+C .
$$

Problem 5. Use the following graph of $f(x)$ to compute $\int_{0}^{5} f(x) d x$.

Solution. The integral is just the area under the curve, which is $1 / 2+1+2+1+1=11 / 2$.
Problem 6(a). Calculate the left Riemann sum to approximate $\int_{0}^{3} \frac{1}{1+2 x} d x$ using $n=3$ subdivisions.
Solution. Let $f(x)=1 /(1+2 x)$. We have $a=3$ and $b=0$ so $\Delta x=(3-0) / 3=1$. Thus the Riemann sum is simply

$$
1(f(0)+f(1)+f(2))=1+1 / 3+1 / 5=23 / 15
$$

Problem 6(b). Draw the rectangles representing the left Riemann sum for the following function $f(x)$ on the interval $[0,3]$ using 6 subdivisions.

Problem 7. Compute the area under the graph of $f(x)=x\left(x^{2}-1\right)^{4}$ between $x=0$ and $x=1$.
Solution. We need to compute

$$
\int_{0}^{1} x\left(x^{2}-1\right)^{4} d x
$$

We make the substitution $u=x^{2}-1$, so that $d u=2 x d x$. If $x=0$ then $u=-1$ and if $x=1$ then $u=0$. Thus

$$
\int_{0}^{1} x\left(x^{2}-1\right)^{4} d x=\int_{-1}^{0} u^{4} \frac{d u}{2}=\left.\frac{u^{5}}{10}\right|_{-1} ^{0}=-(-1)^{5} / 10=1 / 10
$$

Problem 8. Evaluate the definite integral

$$
\int_{1}^{e}\left(2 x+\frac{2}{x}\right) d x
$$

Solution. We have

$$
\int_{1}^{e}\left(2 x+\frac{2}{x}\right) d x=\left.\left(x^{2}+2 \ln |x|\right)\right|_{1} ^{e}=\left(e^{2}+2\right)-(1+0)=e^{2}+1
$$

Problem 9. A book publisher declares that the marginal cost to produce x books is

$$
C^{\prime}(x)=10-500 \frac{x}{(x+1)^{3}}
$$

dollars, and that the fixed cost is 500 dollars. What is the cost function $C(x)$?
Solution. The marginal cost is the derivative of the total cost, so

$$
C(x)=\int\left(10-500 \frac{x}{(x+1)^{3}}\right) d x=10 x-500 \int \frac{x}{(x+1)^{3}} d x
$$

We now make the substitution $u=x+1$, so $d u=d x$ and $x=u-1$. Thus

$$
\int \frac{x}{(x+1)^{3}} d x=\int \frac{u-1}{u^{3}} d u=\int\left(u^{-2}-u^{-3}\right) d u=\frac{u^{-1}}{-1}-\frac{u^{-2}}{-2}+K=-\frac{1}{x+1}+\frac{1}{2(x+1)^{2}}+K
$$

So

$$
C(x)=10 x+500\left(\frac{1}{x+1}-\frac{1}{2(x+1)^{2}}\right)+K
$$

The fixed cost is $C(0)=500(1 / 2)+K=250+K=500$, so $K=250$. Thus

$$
C(x)=10 x+500\left(\frac{1}{x+1}-\frac{1}{2(x+1)^{2}}\right)+250
$$

