MATH 251: ABSTRACT ALGEBRA I WORKSHEET, DAY \#37

Problem 1. For each R and I, decide if R is a ring and if I is an ideal of R. If so, describe the quotient ring R / I and the quotient map $\phi: R \rightarrow R / I$.
(a) The set $R=\left\{\frac{a}{2}: a \in \mathbb{Z}\right\} \subset \mathbb{Q}$ and the set $I=\mathbb{Z} \subset R$.
(b) The set $R \subset \mathbb{Q}$ of rational numbers with odd denominator (in lowest terms), and the set $I \subset R$ of rational numbers with even numerator (and odd denominator).
(c) For F a field, the sets

$$
R=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a, b, d \in F\right\} \subset M_{2}(F), \quad I=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \subset R .
$$

Problem 2. Let R be a commutative ring which has no ideals other than (0) and R. Must R be a field?

