MATH 251: ABSTRACT ALGEBRA I WORKSHEET, DAY \#2

Problem 1. Mark the following true or false, and justify your answer. Let $A, B, C \subset X$ be sets.
(a) $A \cap B=B \cap A$;
(b) $A \backslash B=B \backslash A$;
(c) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$;
(d) If $\# A=\# B$, then a map

$$
f: A \rightarrow B \text { is injective } \Leftrightarrow f: A \rightarrow B \text { is surjective. }
$$

Problem 2. Is the map $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sqrt{x}$ well-defined? Is there a way to modify f so that it is well-defined?

Problem 3. If X is a set with $\# X=5$, then:
(a) How many subsets does X have?
(b) How many subsets having four elements does X have?

Problem 4. Let $f: A \rightarrow B$ be a map of sets. In this exercise, we relate properties of f to its fibers $f^{-1}(b)$ (for $b \in B$). Prove the following statements:
(a) f is injective \Leftrightarrow for all $b \in B$, we have $\# f^{-1}(b) \leq 1$.
(b) f is surjective \Leftrightarrow for all $b \in B$, we have $\# f^{-1}(b) \geq 1$.
(c) f is bijective \Leftrightarrow for all $b \in B$, we have $\# f^{-1}(b)=1$.

Problem 5. Show that $\#(A \cup B)=\# A+\# B-\#(A \cap B)$.

