MATH 251: ABSTRACT ALGEBRA I REVIEW, EXAM \#3

Problem 1. Prove that if R is an integral domain and $x^{2}=1$ for some $x \in R$ then $x= \pm 1$.
Problem 2. Let R be a ring. An element $a \in R$ is said to have a left inverse if $b a=1$ for some $b \in R$. Let $a \in R$, and suppose that a has a unique left inverse b. Show that $a b=1$, so that b is also a right inverse.

Problem 3. Let R be a commutative ring. An element $x \in R$ is said to be nilpotent if $x^{n}=0$ for some $n \in \mathbb{Z}_{>0}$. Show that the set of all nilpotent elements in R forms an ideal.

Problem 4. Let R be the ring $R=\{a+b i+c j+d k: a, b, c, d \in \mathbb{Z} / 3 \mathbb{Z}\}$ where $i^{2}=j^{2}=(i j)^{2}=-1$. Exhibit a zerodivisor in R.

Problem 5. Let F be a field, let $R=M_{2}(F)$, and suppose that I is an ideal of R. Show that $I=(0)$ or $I=R$. [Note: $M_{2}(R)$ is not commutative.]
Problem 6. Let $\phi: R \rightarrow S$ be a ring homomorphism. Let J be an ideal in S. Show that $\phi^{-1}(J)$ is an ideal of R containing $\operatorname{ker} \phi$.

