
MATH 251: ABSTRACT ALGEBRA I
IN CLASS REVIEW, EXAM #3

Problem A. Let R be a ring. The center of R is the set

Z(R) = {z ∈ R : zr = rz for all r ∈ R}.
(a) Prove that the center Z(R) is a subring of R.

(b) Prove that the center of a division ring is a field.
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Problem B. Let R be a ring and let a ∈ R. Let L(a) = {x ∈ R : xa = 0}. Show that L(a)
is a left ideal of R.

Problem C. Let F be a field. Show that any homomorphism φ : F → R where R is a ring
must either be injective or zero.
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