MATH 251: ABSTRACT ALGEBRA I IN CLASS REVIEW, EXAM #3

Problem A. Let R be a ring. The *center* of R is the set

 $Z(R) = \{ z \in R : zr = rz \text{ for all } r \in R \}.$

(a) Prove that the center Z(R) is a subring of R.

(b) Prove that the center of a division ring is a field.

Date: 5 December 2007; exam 14 December 2007.

Problem B. Let R be a ring and let $a \in R$. Let $L(a) = \{x \in R : xa = 0\}$. Show that L(a) is a left ideal of R.

Problem C. Let F be a field. Show that any homomorphism $\phi : F \to R$ where R is a ring must either be injective or zero.