MATH 251: ABSTRACT ALGEBRA I REVIEW, EXAM #1

Problem 1. For each $a, b \in \mathbb{R}$ with $a \neq 0$, define the *linear map*

$$T_{a,b} : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto T_{a,b}(x) = ax + b.$$

Let G be the collection of all such linear maps, i.e. $G = \{T_{a,b} : a, b \in \mathbb{R}, a \neq 0\}.$

- (a) Show that composition of linear maps defines a binary operation on G.
- (b) Show that G is a group under composition. (You may assume that composition of maps is associative.)
- (c) Prove that G is not abelian.

Problem 2. Let G be an abelian group.

- (a) Let $a, b \in G$ have orders 2, 3, respectively. What is the order of ab?
- (b) Let $a, b \in G$ have orders $r, s \in \mathbb{Z}_{>1}$ with gcd(r, s) = 1. What is the order of ab?
- (c) What can you say if G is *not* abelian?

Problem 3. Let G be an abelian group, and for $n \in \mathbb{Z}_{>0}$ let

$$G[n] = \{ x \in G : x^n = 1 \}.$$

Show that G[n] is a subgroup of G.

Problem 4. Let G be a group and suppose that for all $x \in G$, we have $x^2 = 1$. Prove that G is abelian.

Problem 5. Let

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \subset M_3(\mathbb{R}).$$

- (a) Show that H is a subgroup of $GL_3(\mathbb{R})$ (under matrix multiplication).
- (b) Let \mathbb{R}^2 be a group under addition. Prove that the map

$$\begin{split} \phi: H \to \mathbb{R}^2 \\ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto (a, c) \end{split}$$

is a homomorphism, but is not an isomorphism.

Problem 6. Let $\sigma = (1 \ 4)(2 \ 5 \ 8 \ 3 \ 6 \ 9) \in S_9$. Compute the order of σ^i for each integer $i \in \mathbb{Z}$.

Problem 7. Prove that the groups \mathbb{Z} and \mathbb{Q} are not isomorphic.

Problem 8. Let G be a finite group with #G = n > 2. Show that there is no subgroup $H \le G$ with #H = n - 1.

Date: 5 October 2007; exam 8 October 2007.