MATH 251: ABSTRACT ALGEBRA I REVIEW, EXAM \#1

Problem 1. For each $a, b \in \mathbb{R}$ with $a \neq 0$, define the linear map

$$
\begin{aligned}
T_{a, b}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto T_{a, b}(x)=a x+b .
\end{aligned}
$$

Let G be the collection of all such linear maps, i.e. $G=\left\{T_{a, b}: a, b \in \mathbb{R}, a \neq 0\right\}$.
(a) Show that composition of linear maps defines a binary operation on G.
(b) Show that G is a group under composition. (You may assume that composition of maps is associative.)
(c) Prove that G is not abelian.

Problem 2. Let G be an abelian group.
(a) Let $a, b \in G$ have orders 2,3 , respectively. What is the order of $a b$?
(b) Let $a, b \in G$ have orders $r, s \in \mathbb{Z}_{\geq 1}$ with $\operatorname{gcd}(r, s)=1$. What is the order of $a b$?
(c) What can you say if G is not abelian?

Problem 3. Let G be an abelian group, and for $n \in \mathbb{Z}_{>0}$ let

$$
G[n]=\left\{x \in G: x^{n}=1\right\} .
$$

Show that $G[n]$ is a subgroup of G.
Problem 4. Let G be a group and suppose that for all $x \in G$, we have $x^{2}=1$. Prove that G is abelian.

Problem 5. Let

$$
H=\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{R}\right\} \subset M_{3}(\mathbb{R}) .
$$

(a) Show that H is a subgroup of $G L_{3}(\mathbb{R})$ (under matrix multiplication).
(b) Let \mathbb{R}^{2} be a group under addition. Prove that the map

$$
\begin{gathered}
\phi: H \rightarrow \mathbb{R}^{2} \\
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \mapsto(a, c)
\end{gathered}
$$

is a homomorphism, but is not an isomorphism.
Problem 6. Let $\sigma=(14)(258369) \in S_{9}$. Compute the order of σ^{i} for each integer $i \in \mathbb{Z}$.
Problem 7. Prove that the groups \mathbb{Z} and \mathbb{Q} are not isomorphic.
Problem 8. Let G be a finite group with $\# G=n>2$. Show that there is no subgroup $H \leq G$ with $\# H=n-1$.

