MATH 251: ABSTRACT ALGEBRA I HOMEWORK \#11

Problems (for all)

Problem 1. Let I, J be ideals of a ring R.
(a) Show that $I \cap J$ is an ideal of R.
(b) Define the sum of I and J to be

$$
I+J=\{a+b: a \in I, b \in J\}
$$

Prove that $I+J$ is the smallest ideal of R containing both I and J. [Hint: Show that $I+J$ is an ideal, that $I, J \subset I+J$, and that if N is an ideal containing both I and J then $I+J \subset N$.

Problem 2. Let R be a commutative ring and let

$$
M_{2}(R)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in R\right\}
$$

be the 2×2-matrix ring over R.
(a) Let $I \subset R$ be an ideal. Show that

$$
M_{2}(I)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in I\right\}
$$

is an ideal of $M_{2}(R)$.
(b) Let

$$
J=\left\{\left(\begin{array}{ll}
0 & x \\
0 & y
\end{array}\right): x, y \in R\right\} .
$$

Show that J is a left ideal of $M_{2}(R)$ but not a right ideal.
Problem 3. Let $x^{2}+x+1 \in \mathbb{F}_{2}[x]$ and let $R=\mathbb{F}_{2}[x] / I$ be the quotient ring by the ideal $I=\left(x^{2}+x+1\right)$. Denote the quotient map

$$
\begin{aligned}
\mathbb{F}_{2}[x] & \rightarrow R=\mathbb{F}_{2}[x] / I \\
x & \mapsto x+I=\bar{x} .
\end{aligned}
$$

(a) Show that $R=\{\overline{0}, \overline{1}, \bar{x}, \overline{x+1}\}$ has four elements.
(b) Show that the additive group of R is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(c) Show that the multiplicative group R^{\times}is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$. Deduce that R is a field.

Problem 4 (DF 7.4.4). Let R be a commutative ring. Prove that R is a field if and only if $(0) \subset R$ is a maximal ideal.
Problem 5 (DF 7.5.4). Prove that any subfield of \mathbb{R} must contain \mathbb{Q}.

Problems (For grad students)

Problem 6 (DF 7.3.2). Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.
Problem 7 (sorta DF 7.3.34). Let I, J be ideals of a ring R.
(a) Define the product of I and J to be

$$
I J=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i} \in I, b_{i} \in J, n \in \mathbb{Z}_{\geq 0}\right\} .
$$

Show that $I J$ is an ideal of R.
(b) Show that $I \cap J \supset I J$.
(c) Give an example where $I J \neq I \cap J$.

