MATH 251: ABSTRACT ALGEBRA I HOMEWORK \#10

Problems (for all)

Problem 1. Show that $(-1)^{2}=1$ in any ring R.
Problem 2. Let $D \in \mathbb{Z}$ be a nonsquare.
(a) Define $\mathbb{Q}(\sqrt{D})=\{a+b \sqrt{D}: a, b \in \mathbb{Q}\} \subset \mathbb{C}$. Show that $\mathbb{Q}(\sqrt{D})$ is a subring of \mathbb{C} (even a subring of \mathbb{R} if $D>0$).
(b) Show that $\mathbb{Q}(\sqrt{D})$ is a field.
(c) Define $\mathbb{Z}[\sqrt{D}]=\{a+b \sqrt{D}: a, b \in \mathbb{Z}\} \subset \mathbb{Q}(\sqrt{D})$. Show that $\mathbb{Z}[\sqrt{D}]$ is a subring of $\mathbb{Q}(\sqrt{D})$ which is an integral domain but not a field.
(d) Suppose that $D \equiv 1(\bmod 4)$. Show that

$$
\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]=\left\{a+b \frac{1+\sqrt{D}}{2}: a, b \in \mathbb{Z}\right\} \subset \mathbb{Q}(\sqrt{D})
$$

is a subring of $\mathbb{Q}(\sqrt{D})$. What happens when $D \not \equiv 1(\bmod 4)$?
Problem 3. Let $\mathbb{Q}(i)=\mathbb{Q}(\sqrt{-1})$ and similarly $\mathbb{Z}[i]$ be as in Problem 1. Define the map

$$
\begin{aligned}
& N: \mathbb{Q}(i) \rightarrow \mathbb{Q} \\
& a+b i \mapsto(a+b i)(a-b i)=a^{2}+b^{2} .
\end{aligned}
$$

(a) Show that the restriction $N: \mathbb{Q}(i)^{\times} \rightarrow \mathbb{Q}^{\times}$is a homomorphism.
(b) Prove that $a+b i \in \mathbb{Z}[i]$ is a unit if and only if $N(a+b i)=1$. Conclude that $\mathbb{Z}[i]^{\times}=\langle i\rangle$. [Hint: See the text, but only if you are stuck!]

Problem 4. Show that a division ring has no zerodivisors.
Problem 5. Let F be a field, and let $M_{2}(F)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in F\right\}$.
(a) Show that $M_{2}(F)$ is a ring under matrix addition and multiplication. (You may assume that matrix multiplication is associative.)
(b) Show that $M_{2}(F)$ is not a division ring by exhibiting an explicit zerodivisor.

Problems (for grad students)

Problem 6. Show that there are an infinite number of solutions to $x^{2}=-1$ in the ring \mathbb{H}.
Problem 7. A ring R is called Boolean if $a^{2}=a$ for all $a \in R$. Show that every Boolean ring is commutative. [Hint: Not every nonzero element of R is a unit.]

