MATH 251: ABSTRACT ALGEBRA I HOMEWORK #10

PROBLEMS (FOR ALL)

Problem 1. Show that $(-1)^2 = 1$ in any ring R.

Problem 2. Let $D \in \mathbb{Z}$ be a nonsquare.

- (a) Define $\mathbb{Q}(\sqrt{D}) = \{a + b\sqrt{D} : a, b \in \mathbb{Q}\} \subset \mathbb{C}$. Show that $\mathbb{Q}(\sqrt{D})$ is a subring of \mathbb{C} (even a subring of \mathbb{R} if D > 0).
- (b) Show that $\mathbb{Q}(\sqrt{D})$ is a field.
- (c) Define $\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} : a, b \in \mathbb{Z}\} \subset \mathbb{Q}(\sqrt{D})$. Show that $\mathbb{Z}[\sqrt{D}]$ is a subring of $\mathbb{Q}(\sqrt{D})$ which is an integral domain but not a field.
- (d) Suppose that $D \equiv 1 \pmod{4}$. Show that

$$\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] = \left\{a+b\frac{1+\sqrt{D}}{2}: a, b \in \mathbb{Z}\right\} \subset \mathbb{Q}(\sqrt{D})$$

is a subring of $\mathbb{Q}(\sqrt{D})$. What happens when $D \not\equiv 1 \pmod{4}$?

Problem 3. Let $\mathbb{Q}(i) = \mathbb{Q}(\sqrt{-1})$ and similarly $\mathbb{Z}[i]$ be as in Problem 1. Define the map $N : \mathbb{Q}(i) \to \mathbb{Q}$ $a + bi \mapsto (a + bi)(a - bi) = a^2 + b^2.$

- (a) Show that the restriction $N : \mathbb{Q}(i)^{\times} \to \mathbb{Q}^{\times}$ is a homomorphism.
- (b) Prove that $a + bi \in \mathbb{Z}[i]$ is a unit if and only if N(a + bi) = 1. Conclude that $\mathbb{Z}[i]^{\times} = \langle i \rangle$. [Hint: See the text, but only if you are stuck!]

Problem 4. Show that a division ring has no zerodivisors.

Problem 5. Let F be a field, and let $M_2(F) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in F \right\}.$

- (a) Show that $M_2(F)$ is a ring under matrix addition and multiplication. (You may assume that matrix multiplication is associative.)
- (b) Show that $M_2(F)$ is not a division ring by exhibiting an explicit zerodivisor.

PROBLEMS (FOR GRAD STUDENTS)

Problem 6. Show that there are an *infinite* number of solutions to $x^2 = -1$ in the ring \mathbb{H} .

Problem 7. A ring R is called *Boolean* if $a^2 = a$ for all $a \in R$. Show that every Boolean ring is commutative. *[Hint: Not every nonzero element of R is a unit.]*

Date: 14 November 2007; due Wednesday, 28 November 2007.