MATH 251: ABSTRACT ALGEBRA I HOMEWORK \#8

Problems (FOR ALL)

Problem 1. In this problem, we prove the "interesting" parts of the fourth isomorphism theorem. Throughout, let G be a group, let $N \unlhd G$ be a normal subgroup, and let $H \leq G$ be a subgroup such that $H \supset N$.
(a) Define $H / N=\{h N: h \in H\}$. Show that $H / N \leq G / N$ is a subgroup.
(b) Show that if $H \unlhd G$ is normal, then $H / N \unlhd G / N$ is normal.

Problem 2 (DF 3.5.3). Prove that S_{n} is generated by the set $\{(12),(23), \ldots,(n-1 n)\}$. [Hint: Consider conjugates, e.g. (2 3) (12) (2 3) ${ }^{-1}$.]

Problem 3 (DF 3.5.8). Write out the subgroup lattice for A_{4} (see DF Figure 8, page 111 -but only after you try yourself!), and justify your work. For each subgroup N which is normal, determine the isomorphism class of N and A_{4} / N.
Problem 4 (DF 4.2.3(a)). Let $D_{8}=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$ and label these with the integers $1,2, \ldots, 8$. Exhibit the image of each element of D_{8} under the left regular representation of D_{8} into S_{8}.
Problem 5 (DF 4.3.11(a)(c)(d)). For each $\sigma_{1}, \sigma_{2} \in S_{n}$ below, determine if σ_{1}, σ_{2} are conjugate. If they are, give an explicit permutation τ such that $\tau \sigma_{1} \tau^{-1}=\sigma_{2}$.
(a) $\sigma_{1}=(12)(345)$ and $\sigma_{2}=(123)(45)$.
(b) $\sigma_{1}=(15)(237)(681110)$ and $\sigma_{2}=\sigma_{1}^{3}$.
(c) $\sigma_{1}=(13)(246)$ and $\sigma_{2}=(35)(24)(56)$.

Problem 6 (sorta DF 4.3.2). Find all conjugacy classes in the groups $D_{8}, Q_{8}, \mathbb{Z} / 8 \mathbb{Z}$.

Problems (For grad students)

Problem 7. Show that every element in A_{n} for $n \geq 3$ can be written as the product of (not necessarily disjoint) 3-cycles.
Problem 8 (DF 4.3.25). Let $G=G L_{2}(\mathbb{C})$, and let $H=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{C}, a c \neq 0\right\}$. Prove that every element of G is conjugate to some element of the subgroup H and deduce that G is the union of conjugates of H. [Hint: Show that every element of $G L_{2}(\mathbb{C})$ has an eigenvector.]

Only 11 homeworks total, so 3 more to go!

