MATH 251: ABSTRACT ALGEBRA I HOMEWORK \#5

Problems (for all)

Problem 1 (DF 1.7.21). Show that the group of rigid motions of a cube is isomorphic to S_{4}. [Hint: Show that the group of rigid motions acts on the set of four pairs of opposite vertices.]
Problem 2.
(a) Let F be a field and $n \in \mathbb{Z}_{>0}$. Define the special linear group

$$
S L_{n}(F)=\left\{A \in G L_{n}(F): \operatorname{det}(A)=1\right\} .
$$

Show that $S L_{n}(F)$ is a subgroup of $G L_{n}(F)$.
(b) Show that the set

$$
H=\{a+b \sqrt{2}: a, b \in \mathbb{Q}, a, b \text { not both zero }\}
$$

is a subgroup of \mathbb{R}^{\times}under multiplication.
(c) Let $H=\left\{x \in \mathbb{R}: x^{2} \in \mathbb{Q}\right\}$. Show that H is not a subgroup of \mathbb{R} under addition.

Problem 3. Let H, K be subgroups of a group G. Prove that $H \cap K$ is a subgroup of G.
Problem 4 (sorta DF 2.1.6).
(a) Let G be an abelian group, and let

$$
G_{\text {tors }}=\{g \in G: g \text { has finite order }\} .
$$

Show that $G_{\text {tors }}$ is a subgroup of G, known as the torsion subgroup.
(b) Show that if G is a finite abelian group, then $G_{\text {tors }}=G$.
(c) Determine the following groups: $\mathbb{Z}_{\text {tors }},\left(\mathbb{Q}^{\times}\right)_{\text {tors }}$, and $\left(\mathbb{C}^{\times}\right)_{\text {tors }}$.

Problem 5 (DF 2.2.4). For $G=Q_{8}$, compute the center $Z(G)$ and for each $a \in G$, its centralizer $C_{G}(\{a\})$.

Extra problems (For grad students)

Problem 6. Let G be a group. Show that the map

$$
\begin{aligned}
G \times G & \rightarrow G \\
(g, a) & \mapsto g \cdot a=g a g^{-1}
\end{aligned}
$$

defines a group action of G on itself.
Problem 7 (DF 2.1.13). Let H be a subgroup of \mathbb{Q} under addition with the property that $1 / x \in H$ for all nonzero $x \in H$. Show that $H=0$ or $H=\mathbb{Q}$.

