MATH 251: ABSTRACT ALGEBRA I HOMEWORK #5

PROBLEMS (FOR ALL)

Problem 1 (DF 1.7.21). Show that the group of rigid motions of a cube is isomorphic to S_4 . [Hint: Show that the group of rigid motions acts on the set of four pairs of opposite vertices.]

Problem 2.

(a) Let F be a field and $n \in \mathbb{Z}_{>0}$. Define the special linear group

$$SL_n(F) = \{A \in GL_n(F) : \det(A) = 1\}.$$

Show that $SL_n(F)$ is a subgroup of $GL_n(F)$.

(b) Show that the set

$$H = \{a + b\sqrt{2} : a, b \in \mathbb{Q}, a, b \text{ not both zero}\}\$$

is a subgroup of \mathbb{R}^{\times} under multiplication.

(c) Let $H = \{x \in \mathbb{R} : x^2 \in \mathbb{Q}\}$. Show that H is not a subgroup of \mathbb{R} under addition.

Problem 3. Let H, K be subgroups of a group G. Prove that $H \cap K$ is a subgroup of G.

Problem 4 (sorta DF 2.1.6).

(a) Let G be an abelian group, and let

 $G_{\text{tors}} = \{g \in G : g \text{ has finite order}\}.$

Show that G_{tors} is a subgroup of G, known as the torsion subgroup.

(b) Show that if G is a finite abelian group, then $G_{\text{tors}} = G$.

(c) Determine the following groups: \mathbb{Z}_{tors} , $(\mathbb{Q}^{\times})_{tors}$, and $(\mathbb{C}^{\times})_{tors}$.

Problem 5 (DF 2.2.4). For $G = Q_8$, compute the center Z(G) and for each $a \in G$, its centralizer $C_G(\{a\})$.

EXTRA PROBLEMS (FOR GRAD STUDENTS)

Problem 6. Let G be a group. Show that the map

$$G \times G \to G$$
$$(g, a) \mapsto g \cdot a = gag^{-1}$$

defines a group action of G on itself.

Problem 7 (DF 2.1.13). Let *H* be a subgroup of \mathbb{Q} under addition with the property that $1/x \in H$ for all nonzero $x \in H$. Show that H = 0 or $H = \mathbb{Q}$.

Date: 26 September 2007; due Wednesday, 3 October 2007.